ALICE 実験 PHOS 検出器による直接光子測 定に向けた解析技術の開発

M101233 尾林 秀幸

広島大学理学研究科 物理科学専攻 クォーク物理学研究室

2012年2月10日

主查 志垣 賢太 准教授

副查 深沢 泰司 教授

指導教官 杉立 徹 教授

要旨

量子色力学によると現在の宇宙ではクォークは核子中に閉じ込められていて観測することができないが、高 エネルギー原子核衝突で実現される高温高密度状態では閉じ込めから解放された物質相 クォークグルーオン プラズマ(QGP) への相転移が起こると考えられている。QGPでは解放されたクォークが多体の相互作用 をしているため摂動論的量子色力学でもまだ記述できていない。そのため、QGPの性質の解明やその現象論 的記述が進められている。

QGP 研究のために強力なプローブとなるのが光子である。なぜなら光子は QGP 中をほとんど相互作用せずに通過し、生成時の情報を運ぶことができるからである。直接光子は衝突後の時空発展中に様々なプロセスで生成され、横運動量領域ごとに支配的な生成源を持つ。つまり、低エネルギー側の光子は QGP からの熱輻射が支配的で系の温度を反映し、高エネルギー側の光子は初期のパートン散乱の寄与が支配的であり摂動論的量子色力学でよく記述される。2000 年より運転を開始した RHIC 加速器では QGP の探索を目的とし、核子対当たり重心系衝突エネルギー 200GeV 金金衝突での熱光子の測定によって QGP 相転移温度以上の温度に到達していることが分かった。また、200GeV 金金衝突での収量を (陽子陽子衝突 × 衝突回数)で規格化した原子核補正因子 (R_{AA}) という物理量を測定し、ほとんどの横運動量領域で1 と一致することが確認された。このことは光子生成が QGP 媒質の影響を受けていないことを意味している。ただし、統計量が少なく誤差の大きな横運動量 15GeV/c 以上で収量抑制の傾向が表れており、初期パートン散乱で生成される光子が抑制されている可能性が指摘されている。

LHC では RHIC の十倍以上のエネルギーで衝突実験が行われており、より大きな QGP 媒質が長時間形 成されるため、直接光子が大量に生成されると見積もられている。そのため、QGP 媒質中での直接光子の収 量変化を議論できるようになると期待できる。LHC の ALICE 実験では重イオン衝突に特化した検出器群を 備えており、特に、光子を測定するための電磁カロリメータである PHOS 検出器では、約1万個の検出素子 を持ち、各素子がタングステン酸鉛 (PWO) 結晶とアバランシェフォトダイオード (APD) から成っている。 PHOS 検出器は放射長やモリエル半径が小さく、電磁シャワーの広がりを抑えることができるため、高い二 粒子分解能とエネルギー分解能を有している。

電磁カロリメータで光子識別をするための手法として、高エネルギー側で精度がよくなり、また、鉛鉛衝突時の膨大な粒子生成環境下でも適用しやすいことから、私はシャワーの広がり方による光子識別を研究した。 その際 99%の確率で光子に崩壊する π^0 粒子を利用し、光子のシャワーの典型的な広がり方を楕円分布の短軸、長軸半径で評価して光子識別のためのカットを求めた。求めたカットを実データに適用した結果、バック グラウンドを除去でき S/N が向上することが確認できた。また、光子の幾何学的検出効率やカットの効率を 求めることで全光子収量を求めた。さらにはバックグラウンドとなるハドロン崩壊光子の寄与を統計的に差し 引くことによって直接光子の収量を求めた。

目次

1	序論	7
1.1	原子核・相互作用	7
1.2	クォーク・グルーオン・プラズマ (QGP)	7
1.3	RHIC の実験結果	9
1.4	研究目的	11
-		
2	A Large Ion Collider Experiment (ALICE 実験)	12
2.1		12
2.2	ALICE 実験	12
2.3	ALICE 俠出	13
2.4	רעס	16
3	PHOS 検出器	18
3.1	粒子と物質の相互作用	18
3.2	PHOS 検出器	21
4	測定手法	24
4.1	導入	24
4.2	クラスタリング	24
4.3	Shower Shape	25
4.4	不変質量	26
4.5	エネルギーアシンメトリー	26
5	解析	27
5.1	 データセット	27
5.2	光子識別	27
5.3	Shower Shape Cut の評価	34
5.4	Efficiency	36
6	結果・考察	39
6.1	全光子収量....................................	39
6.2	直接光子収量....................................	39
6.3	系統誤差....................................	42
6.4	考察	44
7	結論	47
付録 A	ラピディティー y と擬ラピディティー η	49

図目次

1	クォークの閉じ込め。クォークを引きはがそうとするとクォーク間に線形のポテンシャルが	
	形成されクォーク対を生成するため、単独で取り出すことはできない[3]。	8
2	QCD の結合定数。近距離ではグルーオンによる色遮蔽が起こり結合力が弱まる [3]。	8
3	格子量子色力学によって見積もられた ϵ/T^4 の温度依存性 [2]。臨界温度 $T_c=150-170 MeV$	
	付近で相転移を起こしエネルギー密度が大きく変化していることが分かる。.......	8
4	RHIC 200GeV 金金衝突での熱光子不変収量。4GeV 以上の穴抜きのデータ点は実光子測定	
	から、4.5GeV 以下の塗りつぶされているデータ点は電子対による仮想光子測定によって得	
	られたものである。 $3{ m GeV}$ 以下で陽子陽子の重ね合わせ (点線) よりも収量が増加しており熱	
	光子の寄与が見られる。....................................	9
5	$200{ m GeV}$ 金金衝突で測定された粒子の R_{AA} 。直接光子の R_{AA} が $5{ m GeV}$ 以上で示され、ほと	
	んどのエネルギー領域で1と一致している。ただし、15GeV 以上で減少傾向にある。	9
6	原子核衝突後の時空発展の様子。	10
7	光子の分類	11
8	PYTHIA 2.76TeV 陽子陽子衝突で見積もった光子生成源のエネルギー依存性。ほとんどの	
	エネルギー領域で π^0 崩壊光子が ${\sim}80\%$ を占め支配的である。 $\dots \dots \dots \dots \dots \dots \dots$	11
9	ALICE 検出器	13
10	銅中でのミューオンのエネルギー損失 [4]。GeV オーダーの運動量を持つ粒子は、ほぼ一定	
	のエネルギー損失をする。....................................	19
11	鉛中での電子の放射長当たりのエネルギー損失。高エネルギーでは制動放射が支配的となり、	
	低エネルギーではイオン化が支配的となる。	19
12	鉛中での光子の全反応断面積。高エネルギーで対生成、低エネルギーで光電効果、中間エネ	
	ルギーでコンプトン散乱が支配的となる。	20
13	光電効果のファインマン図。光子は消失して電子を励起・イオン化する	20
14	コンプトン散乱のファインマン図。光子と電子が散乱する。.................	20
15	対生成のファインマン図。電子が消失して電子・陽電子を生成する。物質中でのみ可能。	20
16	電磁シャワーの模式図。高エネルギーの電子や光子が物質中に入射した場合、大量に電子や	
	光子が生成されていく。	21
17	$ ext{PHOS}$ 検出器の配置。現在 $\phi{=}270,\!290,\!310^\circ$ にそれぞれ $ ext{PHOS2},\!3,\!4$ が実装されている。 $[8]$.	22
18	PHOS2 での読み出し素子 (cell) の配置。PHOS 1 モジュールは 64×56=3564 個の cell から	
	なっており、 cell の位置は (i,j) の Row 方向と Column 方向で識別されている。 $[8]$	22
19	PHOS 読み出しチャンネルのゲインの温度依存性。PWO 結晶は低温になるほど発光量が増	
	えるという特徴を持つ。・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	23
20	シャワー形状の模式図。 ${ m x,z}$ 軸方向が ${ m ALICE}$ 座標系で固定されているのに対し、 λ_1,λ_2 軸方	
	向はクラスターの楕円形に合わせて軸の向きを取り直している。	25
21	PHOS2 での bad channels map。横軸が Row 方向 (~x 方向)、縦軸が Column 方向 (~z 方	
	向)。赤色がで示しているのが解析上除去した cell の位置。	27
22	図 21 と同様であり、PHOS3 での bad channels map。	27

23	図 21 と同様であり、PHOS4 での bad channels map。	27
24	(a) 飛跡の延長線と PHOS クラスターの間の最近接距離。中性粒子は対応する飛跡が存在し	
	ないため大きな値をとる。 $({f b})$ 飛跡からの距離が $10{ m cm}$ 以内のクラスターエネルギー分布。	
	$250{ m MeV}$ 付近に ${ m MIP}$ ピークが確認できる。 $({ m c})$ 飛跡からの距離が $10{ m cm}$ より大きいクラス	
	ターのエネルギー分布。MIP ピークは存在しない。	28
25	m PHOS で再構成された 2 クラスターから計算した不変質量分布。ここでは運動量が $3<$	
	$P_T^{\pi^0} <\!\!\! 4 { m GeV}$ 、アシンメトリーカット $lpha <\!\! 0.8$ を施したものをプロットしている。 π^0 起源ク	
	ラスター対の場合 π^0 の質量の $0.135 { m GeV}$ に来ると考えられる。 π^0 の質量ピークの幅は約	
	5MeV と分かる。	28
26	λ_1, λ_2 分布。 $0.0 < E < 0.2 GeV$	29
27	λ_1, λ_2 分布。 $0.2 < E < 0.5 GeV$	29
28	λ_1, λ_2 分布。 $0.5 < E < 1.0 GeV$	29
29	λ_1, λ_2 分布。 $1.0 < E < 1.5 GeV$	29
30	λ_1, λ_2 分布。 $1.5 < E < 2.0 GeV$	30
31	λ_1, λ_2 分布。2.0 <e<2.5gev< td=""><td>30</td></e<2.5gev<>	30
32	λ_1, λ_2 分布。2.5 <e<3.0gev< td=""><td>30</td></e<3.0gev<>	30
33	λ_1, λ_2 分布。 $3.0 < E < 4.0 GeV$	30
34	λ_1, λ_2 分布。4.0 <e<6.0gev< td=""><td>30</td></e<6.0gev<>	30
35	トラックからの距離が 10cm 以内という条件で選び出した荷電粒子クラスターでの	
	$2.0{<}\mathrm{E}{<}2.5\mathrm{GeV}$ での λ_1,λ_2 分布。大半が $\lambda_1{=}0$ に来ている。	31
36	トラックからの距離が 10cm 以内という条件で選び出した荷電粒子クラスターでの	
	$2.0{<}\mathrm{E}{<}2.5\mathrm{GeV}$ での λ_1,λ_2 分布。光子と比べるとブロードな分布をしている。 \ldots \ldots \ldots	31
37	光子クラスターの λ_1, λ_2 分布および 2 次元ガウスフィットの χ^2/ndf 曲線 \ldots \ldots \ldots	31
38	$2.0{<}\mathrm{E}{<}2.5\mathrm{GeV}$ の Shower Shape に対する 2 次元ガウスフィット。 $\chi^2/\mathrm{ndf}{\sim}2$ となってお	
	り、よく一致している	31
39	2 次元ガウスフィットの結果。0 <e<0.2。離散的ピークにより正しくフィット出来ていない。< td=""><td>32</td></e<0.2。離散的ピークにより正しくフィット出来ていない。<>	32
40	2 次元ガウスフィットの結果。0.2 <e<0.5< td=""><td>32</td></e<0.5<>	32
41	2 次元ガウスフィットの結果。0.5 <e<1.0< td=""><td>32</td></e<1.0<>	32
42	2 次元ガウスフィットの結果。1.0 <e<1.5< td=""><td>32</td></e<1.5<>	32
43	2 次元ガウスフィットの結果。1.5 <e<2.0< td=""><td>32</td></e<2.0<>	32
44	2 次元ガウスフィットの結果。2.0 <e<2.5< td=""><td>32</td></e<2.5<>	32
45	2 次元ガウスフィットの結果。2.5 <e<3.0< td=""><td>32</td></e<3.0<>	32
46	2 次元ガウスフィットの結果。3.0 <e<4.0< td=""><td>32</td></e<4.0<>	32
47	2 次元ガウスフィットの結果。4.0 <e<6.0< td=""><td>33</td></e<6.0<>	33
48	光子を $ ext{PHOS}$ に入射したときのクラスターエネルギー $ ext{vs}$ クラスターの $ ext{cell}$ の数。 $1 ext{GeV}$ 以	
	下で cell の数が急激に少なくなることが分かる。.................	33
49	2 次元ガウス関数の 5 つのパラメータのエネルギー依存性	33
50	π^0 シグナルへのフィッティング例。上から下に向かって $(p_T^{\pi^0}$:0-0.5,1-1.5,2-3,4-5,7-10 ${ m GeV})$ 、	
	左から右に向かって $(1\sigma~{ m Cut}, 2\sigma~{ m Cut}, 3\sigma~{ m Cut}, { m No}~{ m Cut})$ 。なお、 $0\text{-}0.5{ m GeV}$ は幾何学的に π^0 が	
	PHOS にほとんど到達できない領域である。	35

51	${ m N}\sigma$ で ${ m Shower}~{ m Shape}~{ m Cut}$ を施した時の π^0 ピークの中心値の変化。カットによらずほぼ一定	
	である。	36
52	${ m N}\sigma$ で ${ m Shower}~{ m Shape}~{ m Cut}$ を施した時の π^0 ピークの幅の変化。カットによらずほぼ一定であ	
	δ。	36
53	${ m N}\sigma$ で ${ m Shower}$ ${ m Shape}$ ${ m Cut}$ を施した時の π^0 のシグナル有意性 $N_S/\sqrt{N_B}$ 。 $N_S/\sqrt{N_B}$ がよい	
	のは 1.5 - 3.0σ の範囲である。	36
54	$N\sigma$ で Shower Shape Cut を施した時の π^0 収量の Efficiency。 $N_{Cut}^{\pi^0}$ / $N_{NoCut}^{\pi^0}$ で評価した。	36
55	N σ で Shower Shape Cut を施した時のバックグラウンドの排除率。Shower Shape Cut に	
	よりバックグランドを 70% 以上除去出来ている。	37
56	PYTHIA で見積もった、Shower Shape Nσ Cut での光子の純度。Shower Shape Cut を掛	
	けることで 30% 光子の純度が上がっている。	37
57	Shower Shape Cut $\sigma \pi^0 p_T$ ごとの効率。	37
58	${ m Shower} \ { m Shape} \ { m Cut}$ の光子エネルギーごとの効率見積もり。 π^0 での効率の平方根をとること	
	で見積もった。....................................	37
59	PHOS での光子の幾何学的検出効率。	38
60	$\operatorname{Bad} \operatorname{channels} \operatorname{map}$ を考慮した π^0 再構成効率と幾何学的検出効率の積。	38
61	全光子の収量。赤線がデータ点であり、黒で塗っているのが PYTHIA による予測と誤差の	
	範囲である。なお、実データの誤差は統計誤差に加え、6.3 節で議論している系統誤差を含め	
	て表示した。....................................	39
62	$2 < P_T^{\pi^0} < 3 ext{GeV}, ext{R2} < 1.5$ での $ ext{Same event}$ のクラスターからペアをとり不変質量を計算し	
	たもの。 π^0 質量領域にピークが見える。	40
63	$2 < P_T^{\pi^0} < 3 ext{GeV}, ext{R2} < 1.5$ での $ ext{Mixed event}$ のクラスターからペアをとり不変質量を計算し	
	たもの。 π^0 質量領域にピークは存在しない。	40
64	${ m Same-event/Mixed-event}$ の比。 $M_{\pi^0} \sim 135 MeV, M_\eta \sim 548 MeV$ に相関のある領域がある	
	ので、相関のない200-400MeV の領域で比をとった。	40
65	Same-event からスケールした Mixed-event を引いたもの。低質量領域には Jet からの相関	
	のあるバックグラウンドが存在するので取り除けていないバックグラウンドを 4 次関数で見	
	積もった。シグナルはガウス分布でフィットし積分することで収量を求めた。	40
66	LHC11a(実データ) での π^0 の横運動量 p_T ごとの π^0 収量 \ldots	41
67	$ ext{LHC11e3e_plus}(シミュレーションデータ)$ での π^0 の横運動量 p_T ごとの π^0 収量 \ldots \ldots	41
68	実データでの γ/π^0 比。	42
69	シミュレーションデータでの γ/π^0 比。	42
70	Double ratio。実データおよびシミュレーションデータでの誤差は統計誤差に加え、6.3 節で	
	議論している系統誤差を含めて表示した....................................	42
71	シミュレーションデータに対する、光子の Shower Shape efficiency のエネルギー依存性	43
72	Shower Shape Cut の効率のずれを実データ/シミュレーションデータの比で評価したもの。	
	$1.5\sigma Cut$ より緩い Cut で違いは 5% 程度ということが分かる。	43
73	π^0 粒子の収量を求める際のバックグラウンドのフィット関数による系統誤差。系統誤差は	
	5% 以下である。	44

74	π^0 粒子の収量を求める際のバックグラウンドのフィッティング範囲による系統誤差。系統誤	
	差は低エネルギーで 4% 程度、高エネルギーで 1% 程度である。 $\dots \dots \dots \dots \dots$	44
75	実データに ${ m Shower\ Shape\ Cut\ }$ を施し、効率 ϵ_{SS}^γ で補正したもの。 ${ m N}\sigma$ ${ m Cut\ }$ に依らず同じ値	
	になるべきものであり、Cut ごとの違いを系統誤差で評価した。	44
76	実データから求めた Shower Shape パラメータ (実線) とシミュレーションデータから求	
	めたパラメータ $(点線)$ の比較。 $ar{\lambda_1},ar{\lambda_2}$ がシミュレーションデータのほうが実データよりも	
	Shower が小さい傾向にある。	45
77	差し引きを行わず求めた、光子の λ_1,λ_2 分布	46
78	サイドバンド領域のクラスターを差し引いて求めた、光子の λ_1,λ_2 分布 \ldots \ldots	46
79	HIJING で見積もった、Shower Shape Cut によるバックグラウンド排除率。	46
80	HIJING で見積もった、Shower Shape Cut による光子純度。	46

1 序論

1.1 原子核・相互作用

私たちの身の回りにある物質は何からできているのだろうか?

この問いに対してある人は原子と電子と答えるだろうし、またある人は原子核と答えるかもしれない。現在 の我々の理解ではより根本的な粒子が存在することを知っているが、あながち大きな間違いではない。なぜな らば物質同士に働く力はエネルギースケールにによって支配的な力が変わり、その結果、物の最小単位として 見えてくるものが変わっていくからである。現在、我々が知っている力は4種類ある。つまり、強い相互作 用、電磁相互作用、弱い相互作用、重力相互作用である(表 1)。4つの力はそれぞれ、媒介する粒子と到達距 離が異なる。強い相互作用は原子核中で働く力のようにごく近距離に働く力でありグルーオンによって媒介さ れる。電磁相互作用は光子によって媒介されており無限大の距離まで到達する。電磁相互作用はβ崩壊のよ うに色荷を変えるような反応であり、弱ボソンによって媒介され近距離で働く。重力相互作用は質量をもつ粒 子に働く力である。

	強い相互作用	電磁相互作用	弱い相互作用	重力相互作用
影響を受ける粒子	クォーク、ハドロン	荷電粒子	クォーク、レプトン	すべての粒子
到達距離	${\sim}1\mathrm{fm}{=}10^{-15}\mathrm{m}$	∞	$\sim 10^{-17} \mathrm{m}$	∞
相対的な強さ (結合定数)	1	$\sim 10^{-2}$	$\sim 10^{-5}$	$\sim 10^{-39}$
典型的な寿命 (秒)	10^{-23}	$10^{-20} \sim 10^{-16}$	10^{-11}	
媒介する力	グルーオン	光子	弱ボソン	(重力子)

表1 4 つの基本相互作用 [1]

原子核を構成している 10⁻¹⁸m 程度の大きさの素粒子が見えてくるエネルギー領域に行くと、核子中に クォークや反クォークがいて、その間をグルーオンが飛び交うことで力を媒介している。低いエネルギーでは クォークを単独で取り出すことはできない。なぜならばクォーク同士を遠ざけようとすると、間にばねのよう な線形のポテンシャルが形成されて、あるエネルギーまで行くとクォーク反クォーク対が生成されてしまうか らである。これをクォークの閉じ込めという (図 1)。

閉じ込めをひも解く鍵となるのが、漸近的自由性と高温高密度状態である。強い相互作用での結合定数 α_s がクォーク間の距離の減少とともに小さくなることが 1973 年に Gross,Wilczek,Politzer らによって示され た。これは強い力を媒介するグルーオンが色荷を持っているため自己相互作用を起こし、遮蔽効果によって色 荷の実効的な強さを弱めるためである (図 2)。

1.2 クォーク・グルーオン・プラズマ (QGP)

漸近的自由性は高温・高密度状態でのクォークの強い力による閉じ込めからの解放を予言する。つまり、高 温状態においては π 中間子などの軽いハドロンが生成されはじめ、膨大なハドロンが生成された状態ではハド ロン同士が重なるようになりクォークの自由度が見えるようになる。また、地球上では通常原子核以上の高密 度にすることは困難であるが、中性子星等の環境下では非常に高密度状態になっておりクォーク間の距離が小

図 1 クォークの閉じ込め。クォークを引きはがそう とするとクォーク間に線形のポテンシャルが形成さ れクォーク対を生成するため、単独で取り出すことは できない[3]。

図 2 QCD の結合定数。近距離ではグルーオンによ る色遮蔽が起こり結合力が弱まる [3]。

さくなっていると予測されている。これらの状態では α_s が小さいエネルギー領域に行き、クォークやグルーオンが核子中に閉じ込められない物質状態が生成される。この状態はプラズマ中での遮蔽効果への類似性から クォークグルーオンプラズマ (QGP) と呼ばれる。

QGP の有無および生成温度は格子量子色力学 (lQCD) によって調べられている。図 3 のように臨界温度温度 $T_c = 150 - 170 \text{MeV}$ 付近でエネルギー密度が急激に増加しており、QGP 相への相転移を起こすことが分かった。

図 3 格子量子色力学によって見積もられた ϵ/T^4 の温度依存性 [2]。臨界温度 $T_c = 150 - 170 MeV$ 付近 で相転移を起こしエネルギー密度が大きく変化していることが分かる。

1.3 RHIC の実験結果

QGP の生成は実験的にも確認されている。その1つが2000年より運転を開始した RHIC 加速器での熱光 子の測定である。重心系衝突エネルギー200GeV 金金衝突での熱光子測定を行った結果、低エネルギー領域 で陽子陽子衝突を衝突回数でスケールしたものの収量と比べて収量に増加が見られることが分かった (図 4)。 この増加分は QGP からの熱輻射によるものであり、ボルツマン分布 $\exp(-\frac{p_T}{T})$ によるフィッティングの結 果、系の温度 T が220MeV 程度になっており、QGP の相転移温度を超えていることが分かった。

また、直接光子に対して R_{AA} という物理量も調べられている。 R_{AA} は (核子核子衝突での収量)/(衝突回数 × 陽子陽子衝突での収量) で定義される物理量であり、核子核子衝突が陽子陽子衝突の重ね合わせで記述できるときに1 になるように規格化されている。1 からのずれは核子間の相互作用や QGP 等の物質相が生成される効果を反映している。 R_{AA} を 5GeV 以上で調べたものが図 5 であり、直接光子 (direct γ) はほとんどのエネルギーで R_{AA} が 1 であることが分かる。ただし横運動量 $p_T > 15 \text{GeV/c}$ では減少傾向にあり、初期光子が抑制されている可能性が指摘されている。

図4 RHIC 200GeV 金金衝突での熱光子不変収量。 4GeV 以上の穴抜きのデータ点は実光子測定から、 4.5GeV 以下の塗りつぶされているデータ点は電子 対による仮想光子測定によって得られたものである。 3GeV 以下で陽子陽子の重ね合わせ(点線)よりも収 量が増加しており熱光子の寄与が見られる。

図 5 200GeV 金金衝突で測定された粒子の *R_{AA}*。 直接光子の *R_{AA} が* 5GeV 以上で示され、ほとんどの エネルギー領域で1と一致している。ただし、15GeV 以上で減少傾向にある。

RHIC およびその他の過去の実験結果から、原子核衝突後に以下のような時空発展をすることが分かっている (図 6)。

衝突前

加速器によって加速された粒子はローレンツ収縮によって円盤状になっている。また、原子核内では核 子内の相互作用に加え核子間の相互作用が起こっており、陽子内と原子核内では構成要素であるパート ンのエネルギー分布関数 (PDF) が異なっている。 • 前平衡状態

運動量移行 Q^2 の大きい反応が支配的に起こる。この反応は QCD の結合定数 α_s が小さいことから摂動論的 QCD で記述可能である。光子生成過程としてはクォークグルーオンのコンプトン散乱やクォーク反クォーク対消滅による初期光子 (Prompt photon)の生成が支配的である。初期光子は高エネルギー光子の主な生成源となる。また、高横運動量粒子 (Jet)が生成されると周囲の低エネルギーの QGP 物質中 (medium)を通過する際に相互作用しながらエネルギーを落とす。この反応から Jet+medium による光子 (Fragment photon)が生成されると予想されている。

 $\bullet \ \mathrm{QGP}$

クォークやグルーオンの多重散乱によって熱平衡に到達し QGP が生成される、この物質相からは熱輻射光子 (Thermal photon) が放出される。熱光子は低エネルギー光子の主な生成源となる。

• 凍結過程

系の温度が冷めていくに従って粒子種を変えるような運動量移行の大きな反応が無くなりハドロンの化 学組成が固定化される(化学的凍結)。また粒子間の相互作用が無くなることで粒子の運動量分布が固定 される(熱的凍結)。なお、衝突から凍結するまでの過程で様々なハドロンが生成されるが、ハドロンが 崩壊して出る光子がある。これを崩壊光子(Decay photon)という。光子の大半を占めるのが崩壊光子 である。

図6 原子核衝突後の時空発展の様子。

衝突から出てくる光子をまとめたのが図7である。光子は直接生成される光子(直接光子)と崩壊によって 2次的に生成される光子(崩壊光子)に分けられる。直接光子のほうがより物理的な情報を持っていると考え られており、その生成過程によってさらに熱光子、Fragment 光子、初期光子に分けられる。

2.76 TeV 陽子陽子衝突での直接光子および各崩壊光子の全光子に占める割合を見積もったのが図 8 である。 ここでは崩壊光子の生成源のうちでも寄与の大きなハドロン $(\pi^0, \eta, \omega, K_s^0, \eta')$ を挙げており、 π^0 がほとんどの横運動量領域で 80% 以上を占めていることが分かる。また直接光子は高エネルギーで寄与が大きくなることが分かる。

図7 光子の分類

図 8 PYTHIA 2.76 TeV 陽子陽子衝突で見積もった光子生成源のエネルギー依存性。ほとんどのエネルギー領域で π^0 崩壊光子が $\sim 80\%$ を占め支配的である。

1.4 研究目的

QGP 研究のために光子は重要なプローブとなる。なぜならば、光子は QGP 中でほとんど相互作用せずに 出てくるため生成時の情報を失うことなく得ることができるからである。また、原子核衝突後の様々な過程に よって生成されるため、エネルギー領域ごとに支配的な反応が異なることを利用して QGP の理解のための 様々な情報を取り出すことができる。ただし QGP 物質中では光子生成源自体の反応が変化しており、鉛鉛衝 突のデータだけを測定したのでは、光子生成源の何が変化したのか理解することができない。そのため QGP 以外の効果を調べておいて、そこからのずれを見るという作業が重要になる。

本研究では陽子陽子衝突での光子測定によってベースライン測定を目指した。高エネルギー原子核衝突では 膨大な粒子が生成されるため粒子識別が重要であり、バックグラウンドの少ない陽子陽子衝突において光子シ グナルを抽出してエネルギーごとに光子の持つシャワー形状を調べた。光子の持つ形状を利用して光子識別の ためのカットの同定と評価を進めた。また、求めたカットを用いて光子収量を求めた。

2 A Large Ion Collider Experiment (ALICE 実験)

2.1 LHC 加速器

LHC 加速器はジュネーブ郊外にあり、スイスとフランスの国境をまたいで建設されている衝突型粒子加速 器である。地下 100m、周長 27km のトンネル中に 1232 個の超電導ダイポールマグネットを設置することで 大強度磁場を生成し、重心系衝突エネルギーを陽子陽子衝突で 14TeV、鉛鉛衝突で 5.5TeV の衝突が可能な ように設計されている。また、陽子ビームで 10⁻³⁴cm⁻²s⁻¹、鉛ビームで 10⁻²⁷cm⁻²s⁻¹ という高ルミノシ ティービームを供給することで、生成断面積の小さなイベントでも探索することができる。

加速器の性能を他実験での加速器と比較したのが表2である。LHC 加速器がビームを絞ることで非常に高 いルミノシティーを実現しているほか、長時間高いルミノシティーを維持したまま短時間間隔でビームバンチ を衝突させていることが分かる。

	HERA	TEVATRON		R.	HIC			LHC
	(DESY)	(Fermilab)		(Broo	khaven)		(0	CERN)
Physics start date	1992	1987	2001	2000	2004	2002	2009	2010
Physics end date	2007	-			-			-
Particles collided	ep	$p\bar{p}$	pp(pol.)	Au Au	Cu Cu	d Au	$^{\rm pp}$	Pb Pb
	e·0.03		0.25				7.0	2.76 TeV/n
Maximum beam energy (TeV)	p:0.92	0.980	34% pol	$0.1 \mathrm{TeV/n}$	$0.1 \mathrm{TeV/n}$	$0.1 \mathrm{TeV/n}$	(3.5)	(1.38 TeV/n)
Luminosity			85(pk)	0.0040(pk)	0.020(pk)	0.27(pk)	1.0×10^{4}	1.0×10^{-3}
$(10^{30} cm^{-2} s^{-1})$	75	402	55(ave)	0.0020(ave)	0.0008(ave)	0.14(ave)	(170)	(1.3×10^{-5})
Time between collisions(ns)	96	396	107	107	321	107	$24.95 \\ (49.90)$	99.8 (1347)
Beam radius	e:280(H),50(V)	p:28					16.6	15.9
$(10^{-6}m)$	p:265(H),50(V)	\bar{p} :16	90	135	145	145	(45)	(45)
Initial luminosity decay		6					14.9	10.9-3.6
time, $-L/(dL/dt)$ (hr)	10	(average)	2.0	1.1	1.8	1.5	(8)	(150-50)

表 2 原子核衝突加速器 (ep, *pp*, pp, Heavy Ion) の比較。H は Horizontal, V は Vertical の意味である。 LHC 加速器が他の加速器と比べて非常に良い性能であることが分かる [4]。

LHC 加速器では 4 つの主要な実験が行われている。ATLAS 実験と CMS 実験では標準理論で見つかって いないヒッグス粒子の探索や標準理論を超える超対称性粒子 (SUSY 粒子)の探索を進めている。LHCb では ボトムクォークを大量に生成することで CP 対称性の破れを研究し、反粒子が消えた謎について迫ろうとして いる。ALICE 実験についてはでは質量の起源やクォークの閉じ込めの謎について研究しており、次節で詳細 に見ていく。

2.2 ALICE 実験

ALICE 実験には 35 カ国 120 機関に所属する 1300 人以上のメンバーが参加する大型実験である。

主要な研究目的はハドロン質量の起源の解明とクォークの閉じ込めの研究である。ハドロンの質量が約 1000MeV であるのに対し、構成要素である各クォークは数 MeV しかないことが知られている。このハド ロン質量の大半はカイラル対称性という右巻き粒子と左巻き粒子の間の対称性が破れることで生まれると考 えられており、ALICE 実験で行う原子核衝突で到達する温度で部分的に回復すると考えられている。また、 クォークの閉じ込めについては原子核衝突によって、クォークの閉じ込めからの解放 ~ ハドロン化までの時 空発展を追うことで研究されている。 ALICE 実験がターゲットとする高エネルギー原子核衝突では複数の複雑な現象を解明していくため、可能 な限り多くの粒子情報を取り出し、様々な視点でとらえていく必要がある。複数の粒子を同時に測定すること を可能にするため、ALICE 検出器は様々な検出器群によって構成されている。検出器の全体図は図9の通り である。

2.3 ALICE 検出器

図 9 ALICE 検出器

ALICE 検出器は 3 つのパートに分類できる。1 つ目はビーム軸方向の $2.5 < \eta < 4.0$ に存在する Muon 検出器、2 つ目はビーム軸を覆うようにして存在する Central 検出器。3 つ目は $\eta > 4.0$ の超前方に存在し、 イベント全体の特徴付けを行いトリガーをするためのいくつかの小さな検出器である Foward 検出器である [5],[6]。

なお、ALICE では ALICE 座標系をというものを定義している。図 9 の左上に書かれているように、z 軸 はビープパイプに平行でミューオン検出器と反対方向である。+zの方向を A-side と呼び、-z 方向を C-side と呼ぶ。y 軸は z 軸と垂直で上の方向。x 軸は z 軸と垂直で LHC 加速器のリングの中心に向かう方向である。 なお x,y,z 軸は右手系になるように定義されている。

2.3.1 Central 検出器

Central 検出器は L3 マグネット (0.5T の磁場を生成)内にあり、極角で $45^{\circ} < \theta < 135^{\circ}$ に存在する検出器 から成っている。イベントごとにハドロン、電子、光子の測定を行っている。

• Inner Tracking System (ITS)

ITS は半径 4-44cm に配置された 6 層のシリコン検出器であり、内側から順に SPD(Silicon Pixel Detector),SDD(Silicon Drift Detector),SSD(Silicon Strip Detector) が 2 層ずつ備えられている。 主要な目的は衝突点の決定であり、100µm 以上の精度で衝突点を決定することができる。また、長い 寿命によって衝突点から離れたところで崩壊するチャーモニウムやハイペロン崩壊の再構成に必要な 2 次バーテックスも決定している。重イオン衝突での膨大な数の粒子生成に対応するために、単位ラピ ディティあたり 8000 個の荷電粒子でも測定できるように設計されている。

検出器がカバーしている領域は $|\eta| < 0.9$ であり、最も内側の pixel 層では $|\eta| < 1.75$ をカバーしている。

衝突点の他にも、SDD や SSD において粒子のエネルギー損失 dE/dx を測定しており、他検出器の情報と合わせることで粒子識別の向上を行っている。この情報は磁場によって大きく曲げられてしまう低 運動量粒子にとっては唯一の粒子識別情報となる。

• Time Projection Chamber(TPC)

TPC は半径 80 から 250cm をカバーする Central での主要な飛跡検出器であり、 $|\eta| < 0.9$ (ビーム軸方 向に 500cm)の領域をカバーしている。TPC では ITS,TRD,TOF と並んで、荷電粒子の運動量測定、 粒子識別、バーテックスの測定、2 つの飛跡の分離、dE/dxの分解能を提供している。

TPC はハドロン物理の要請から以下のような条件を満たすよう設計されている。

- 運動量の差が 5MeV 以下ならば 2 つの飛跡を分離できる。
- ハドロンを識別するために dE/dx の分解能が 8% 以上。
- ITS や TOF の飛跡と一致する効率が 85-95%
- Time Of Flight (TOF)

TOF は飛行時間測によって粒子の質量を計算し荷電粒子の粒子識別を行うための検出器であり、 ITS+TPC,HMPID がカバーできない中間運動量領域での粒子識別を行っている。 3σ の有意さで π 中間子/K 中間子 分離を 2.2GeV/c まで行い、 3σ の有意さで K 中間子/陽子 分離を 4GeV/c まで行うこ とができる。

TOF は半径 370cm から 399cm に位置しており、|y| < 1,方位角方向に 2π の領域をカバーしている。 なお、厚み 29cm は約 0.2 放射長に相当する。荷電粒子検出器である MPPC を 10 万個並べることで 100ps 以下の時間分解能実現し、単位ラピディティあたり 8000 個の荷電粒子が出る環境でもシグナル による読み出し素子の占有率を低く保っている。

High Momentum Particle Identification Detector (HMPID)
 高エネルギーでは、質量の違いがエネルギー損失 dE/dx の違いとしてあまり現れなくなるが、HMPID

では粒子の速度 βc が物質中での光速 c/n(n:物質の屈折率) を上回った時に出るチェレンコフ光を利用 して粒子識別を行うことで高運動量領域で粒子識別を行っている。

衝突点から 4.5m 程度に位置する HMPID では、他検出器がカバーしている 1GeV 程度よりも高い運動量領域での粒子識別を行っており、 3σ の有意さで π 中間子/K 中間子 分離を 3GeV まで、K 中間子/陽子 分離を 5GeV まで行うことができる。

 Transition Radiation Detector (TRD)
 TRD は ALICE で主要な電子検出器であり、 |η| < 0.9 の領域で ITS, TPC とともに Heavy quark の 研究のための電子同定を行っている。

物理の要請から以下のような条件を満たすよう設計されている。

- p>5GeV/c の粒子の運動量分解能が 5% 以上。
- p>1GeV/c の粒子のトラッキング効率が 90% 以上。
- $p_T > 3$ GeV/c の電子に対して 100 の π 中間子除去係数。(Υ に対しては厳しいものの、軽いベクト ルメソン (ρ, ω, ϕ) で満たしている。)
- Electro Magnetic Calorimeter (EMCal)
 EMCal は電磁シャワーの測定を通じて ALICE でのジェット測定のための性能を最大限に引き出すことのできる検出器である。最重要な特徴は高エネルギージェットに対する効率的でバイアスのない速いトリガー (Level0,1 トリガー)となること、およびジェットエネルギーの中性粒子成分の測定である。荷電粒子だけに依った測定では測定バイアスに左右されやすいが、中性粒子の測定によってバイアスを減らすことができる。

EMCal によってジェットのエネルギー分解能が向上することができ、また、高横運動量の光子、中性 ハドロン、電子の測定能力を増大させることができる。EMCal は半径 460cm に位置し、80° < ϕ < 110°, $|\Delta\eta| < 0.7$ の領域をカバーしている。

Photon Spectrometer (PHOS)
 PHOS 電磁カロリメータは 0.5-10GeV/c の光子測定、1-10GeV/c の *pi*⁰ 測定、2-10GeV/c の η 測定
 に最適化された検出器であり、π⁰, η の不変質量ピークでシグナルバックグラウンド比 (S/N 比) が最大
 になるようなエネルギー分解能や位置分解能が提供されている。
 PHOS では光子に加え、荷電粒子や中性ハドロン (π, K, p, n, n̄) も測定可能であり、ハドロンの除去は
 Shower 形状によって行われる。
 PHOS については 3 章で詳しく見る。

2.3.2 Muon 検出器

Muon 検出器は $2.5 < \eta < 4.0$ に位置し、吸収体, 飛跡検出器、2 極電磁石、ミューオンフィルター、トリ ガーチェンバーから成っている。

前方吸収体

前方吸収体ではミューオン以外のバックグラウンドの除去を行っており、多重散乱を制限しミューオン のエネルギー損失を防ぐため炭素やコンクリートでできている。内部のビームシールドは小角度で出る バックグラウンドを防ぐためタングステン、鉛、鋼でできている。

● 飛跡検出器

飛跡検出器は 10 枚のカソード パッド/ストリップ チェンバーから成っており、各チャンネルは 100 万 以上の読み出し素子を有する。空間分解能は 100µm 以下である。

• トリガーチェンバー

トリガーチェンバーは Heavy quark の共鳴粒子の崩壊を選び出すために設計されており、ミューオンの運動量を測定している。空間分解能は 1cm 以下であり、フロントエンドエレクトロニクスではビームバンチの通過の識別のため 2ns の時間分解能が得られるように設計されている。

- 2 極電磁石
 2 極電磁石は衝突点から 7m の距離に位置し、0.7T の磁場を生成している。
- 2.3.3 Foward 検出器
 - Zero Degree Calorimeter (ZDC)
 ZDC は衝突点から 115m 離れたところに位置しており、4 つのカロリメータから成っている。カロリ メータは陽子を測定するものと中性子を測定するものがあり、磁場によって分離している。ZDC は観 測核子のエネルギーを測定することによって中心衝突度を決定している。
 - FMD

FMD はオフラインで正確な荷電粒子の多重度情報を提供する検出器である。 $-3.4 < \eta < -1.7, 1.7 < \eta < 5.0$ の領域に位置し、5 つのリング上にある 51200 チャンネルのシリコンストリップから成っている。読み出し速度が 13 μ sec 程度と遅いため Level2 トリガー以上でトリガー検出器として加わることができる。

• T0

T0 はチェレンコフカウンターを伴った 2 枚の PMT から成っており、Level 0 トリガーを形成するた めの早い時間シグナルを提供し、TRD 起動のための信号作成や TOF のための衝突時間を照会する。 T0 は $-3.3 < \eta < -2.9$ および $4.5 < \eta < 5.0$ に位置している。時間分解能は 50ps 以下であり、検出 効率は陽子陽子衝突で 50% 程度、鉛鉛衝突でほぼ 100% である。

• V0

V0 は - $3.7 < \eta <$ - 1.7 に位置する V0C および $2.8 < \eta < 5.1$ に位置する V0A の 2 枚の円盤状のプラスチックシンチレータタイルから成っている。

V0は損失エネルギーの敷居値を設定し、オンラインのLevel0中心衝突度トリガーを提供している。また、ミューオン検出器のためのバックグラウンド除去能力を提供している。

2.4 トリガー

データ収集を行うためには原子核衝突が起こったということを判断して各検出器に知らせる必要がある。また、データ収集の高速化やまれなイベントの収集のためには、より高いレベルの条件を掛け、取りたいイベン

トを抽出する必要がある。この目的のために使われるのがトリガー検出器である。

原子核衝突が起こったというだけの最小限のバイアスで取られるデータをミニマムバイアス (MB) データ と言う。ALICE では MB データは SPD(ITS で最も内側に存在する検出器) と V0 によってトリガーが立て られる。2010 年はデータを取り始めた年なので、Int1 トリガーという最も緩いトリガーが使用されており、 (SPD での Hit が 1 以上 or V0A へ両側からビームが来る or V0C へ両側からビームが来る) という or のト リガーが用いられている。なお、2011 年のデータに対しては Int7(SPD and V0A and V0c) という and のト リガーが立てられている。MB の定義の違いにより、陽子陽子衝突の断面積は Int1 と Int7 で異なっており、 Int1 トリガーで $\sigma_{pp}=62$ mb、Int7 トリガーで $\sigma_{pp}=54$ mb となっている。

3 PHOS 検出器

PHOS 検出器は光子や荷電粒子を測定するための検出器である。高いエネルギー分解能と位置分解能を 持っているため、粒子の持つ4元運動量を正確に求めることができ、光子や光子に崩壊する中間子(π⁰,η な ど)を非常によく測定することができる。ここでは、PHOS 検出器の検出原理を示すとともに詳細なセット アップについて見ていく。

3.1 粒子と物質の相互作用

3.1.1 荷電粒子の相互作用

荷電粒子が物質中を通過する際には、物質との相互作用の結果エネルギーを失い、かつその進行方向も曲げ られる。その際の反応として、

(I) 原子や分子中の電子の励起・イオン化

(Ⅱ) 制動放射

がある。

(II)の過程は質量の軽い電子、陽電子で重要なエネルギー損失過程となるが、それ以外の粒子ではほとんど 効かない。これは、制動放射は荷電粒子の進行方向が原子核の電場によって曲げられることによって起こる が、質量の大きな粒子では加速度が小さくなるためである。

電子、陽電子以外の重い荷電粒子は (I) の過程によって物質中の電子と非弾性衝突を起こし、電子をイオン 化や励起することによってエネルギーを落とす。この過程におけるエネルギー損失-dE/dx はベーテブロッホ の式 (1) によってよく記述される [1]。

$$-\frac{dE}{dx} = nZz^2 \frac{4\pi\alpha^2(\hbar c)^2}{m_e c^2 \beta^2} (\ln\frac{2m_e c^2 \beta^2 \gamma^2}{I} - \beta^2)$$
(1)

ここで、-dE は物質中を dx 進む間に落とすエネルギーの大きさ、n は物質中の密度 (cm^{-3}) 、Ze は物質原子の電荷、m_e は電子の質量、 $\beta c \ge ze$ は荷電粒子の速度と電荷を表す。I は物質原子の平均励起ポテンシャルと呼ばれるパラメータであり、物質ごとに測定によって求められる量である。

この式の特徴は、エネルギー損失の大きさが粒子の質量によらず、ほぼ速度 β だけの関数として記述される ことである。また、速度 β が大きくなって \sim 0.96 程度となるとエネルギー損失はほぼ一定値となる。このような粒子を Minimum Ionizing Particle(MIP) という。図 10 は鉛中でのミューオンの速度 β に対するエネル ギー損失の大きさを表している。

衝突点から PHOS までの間の 460cm には L3 マグネットによって 0.5T の磁場がかかっているため PHOS に到達可能な粒子の運動量は 0.35GeV 以上となる。そのため PHOS を通過する荷電粒子は GeV オーダーの 運動量を持ち、MIP となって 200-300MeV のエネルギーを落としながら PHOS を突き抜けていく。

電子が物質中に入射した場合は、小さな質量により原子核の作る電場によって曲げられやすいため、制動放 射によるエネルギー損失が重要になる。図 11 は鉛中での放射長(後述)あたりのエネルギー損失の大きさであ る。電子のエネルギーが高エネルギーで制動放射が支配的となり、低エネルギーでは原子中の電子のイオン化 や励起が支配的となることが分かる。またこの2 つの過程でのエネルギー損失の大きさが入れ替わる境界点は 臨界エネルギー *E_c* と呼ばれるが、*E_c* が 10MeV 程度のオーダーであることが分かる。

図 10 銅中でのミューオンのエネルギー損失 [4]。GeV オーダーの運動量を持つ粒子は、ほぼ一定のエネ ルギー損失をする。

図 11 鉛中での電子の放射長当たりのエネルギー損失。高エネルギーでは制動放射が支配的となり、低エ ネルギーではイオン化が支配的となる。

3.1.2 光子の相互作用

光子と物質との相互作用は主に次の3つである[7]。

- (I) 光電効果
- (II) コンプトン散乱
- (Ⅲ) 対生成

(I) 光子が原子に吸収され、主として最内殻 (K 殻) の電子が運動エネルギー $E=(h\nu - 束縛エネルギー)$ で飛び出してくる。光電効果は光子のエネルギーの小さい領域で支配的である (図 13)。

(II) 原子中の電子の束縛エネルギーが無視できるほど入射粒子のエネルギー hv が大きくなると、光子と電子の衝突は光子と自由電子との衝突と考えることができる。自由電子はエネルギー運動量保存則から光子を吸

収できないので、可能な過程は (自由) 電子による光子の散乱、すなわちコンプトン散乱が起こる (図 14)。 (Ⅲ) 光子のエネルギーが $h\nu > 2m_ec^2 = 1.02$ MeV になると、物質中の電磁場との相互作用により、光子が 急に消失して 1 対の電子と陽電子が運動エネルギー $h\nu - m_ec^2$ を分かち合って飛び出すことがある。なお、 この過程は真空中ではエネルギー保存則や運動量保存則が成り立たないため起こらない。この過程は光子のエ ネルギーが高い領域で支配的となる (図 15)。

図 12 鉛中での光子の全反応断面積。高エネルギーで対生成、低エネルギーで光電効果、中間エネルギー でコンプトン散乱が支配的となる。

光子の反応で特徴的なのは、(I),(III)の反応のように光子のエネルギーが次第に失われていくのではなく、1 回の反応で消滅することである。そのため、光子は物質を通過するにしたがってその数が減っていく。 各光子ごとに断面積(確率)に応じて反応するため、減衰の仕方は光子の吸収長μを用いて

$$I(x) = I_0 \exp(-\mu x)$$

 $\mu = \mu$ 来電 + μ コンプトン + μ 対生成

と表すことができる。

高エネルギーの光子が物質中に入射した場合、光子は高エネルギーの電子・陽電子を生成する。この電子・ 陽電子のエネルギーが制動放射に十分なエネルギーを保っている場合には電子・陽電子のそれぞれが制動放射 で光子を放出する。この光子が再び電子・陽電子を生成し... というように、反応が繰り返されて電子・陽電 子と光子がネズミ算的に大量に生成されていく。この過程は電子、陽電子が制動放射よりもイオン化によるエ ネルギー損失が大きくなるような低エネルギーまで続く。この現象を電磁シャワーという (図 16)。

高エネルギー粒子の物質中での相互作用のしやすさは物質固有に決まっている。入射粒子の進行方向の相互 作用に関する距離を放射長といい、進行方向と垂直方向の広がりやすさをモリエル半径という。

放射長は以下のように定義される値である。(1)電子に対して、制動放射によってエネルギーが 1/e(e:ネイ ピア数、~2.72)になるまでの平均距離。(2)光子に対して、対生成を起こす平均自由行程の 7/9 倍。2 つの定 義を持つのは、光子が 1 回の反応でエネルギーを失うため、1/e となる距離を定義できないためである。

放射長の長さは物質ごとに計算されており、近似式として

$$X_0 = \frac{716.4 \ g \ cm^{-2}A}{Z(Z+1)\ln(287/\sqrt{Z})}$$

と求められている [4]。ここで A は原子の質量、Z は原子数である。A/Z は物質によってあまり変化しないため、この式から原子数の増加とともに電子密度が増加して放射長が小さくなることが分かる。

垂直方向の広がりはモリエル半径 R_M でよく評価できる。

$$R_M = X_0 \frac{21MeV}{E_c}$$

ここで E_c は臨界エネルギーであり電子の制動放射によるエネルギー損失とイオン化によるエネルギー損失が 一致するエネルギーである。物質によって異なるが 10 MeV 程度のオーダーである。 $1R_M$ 以内にシャワーの エネルギーの 90% が収まる。

図 16 電磁シャワーの模式図。高エネルギーの電子や光子が物質中に入射した場合、大量に電子や光子が 生成されていく。

3.2 PHOS 検出器

PHOS は電磁シャワーを利用し、入射粒子のエネルギーを測定する電磁カロリメータである。光子、荷電粒子、中性ハドロンの測定が可能である。特に光子測定に特化していて、光子の直接測定や軽い中性中間子の測定に最適化されている。

各読み出し素子はタングステン酸鉛 PbWO₄(略して PWO) とアバランシェフォトダイオード (APD) から 成っている。1 モジュールは 56×64 個のチャンネルから成っており、 ϕ 方向に 20° 、z 方向に 120cm 覆って いる。現在 3 モジュールが組み込まれている。

図 17 PHOS 検出器の配置。現在 ϕ =270,290,310°にそれぞれ PHOS2,3,4 が実装されている。[8]

図 18 PHOS2 での読み出し素子 (cell) の配置。PHOS 1 モジュールは 64×56=3564 個の cell からなっており、cell の位置は (i,j) の Row 方向と Column 方向で識別されている。[8]

PWO 結晶の放射長は 0.89cm、モリエル半径は 2cm である。電磁シャワーをごく小さな領域に閉じ込める ため、各素子での結晶のサイズは 18×2.2×2.2 cm³ で設計されていて、20 放射長、1 モリエル半径に相当す る。そのため PHOS は非常に高い位置分解能とエネルギー分解能を持つ。表 3 では代表的な無機シンチレー タとの比較を行っており、PWO 結晶が際立って高い密度を持っており、放射長、モリエル半径とも小さいこ とが分かる。

入射粒子が落としたエネルギーで PWO 結晶は波長 420nm と 480-520nm の 2 つの蛍光線を出す。これら は減衰時間が異なっており、420nm の蛍光線が 10ns 程度で早くでて、480-520nm の蛍光線が 30ns 程度で遅 く出る。PHOS では早い成分を用いてエネルギー測定を行っている。

PWO 結晶は他の無機シンチレータと比較して発光量が小さい。PWO 結晶は低温になるほど発光量が大き くなるという性質を持つため (図 19)、ALICE 実験では冷却システムを構築して PWO 結晶を-25°C で維持 して発光量を増やしている。

APD は高い量子効率を持ち、磁場中でも影響を受けずに動作できるのが特徴である (表 4)。ALICE では

物質名	密度 $[g/cm^2]$	放射 長 [cm]	モリエル半径 [cm]	減衰時間 [ns]	発光量 [NaI 比]
NaI(Tl)	3.67	2.59	4.13	230	100
BGO	7.13	1.12	2.23	300	21
$\operatorname{CsI}(\operatorname{Tl})$	4.51	1.86	3.57	1300	165
$PbWO_4$	8.3	0.89	2.00	10(f), 30(s)	0.29(f), 0.083(s)

表 3 無機シンチレータの比較 [4]。f:fast 成分、s:slow 成分の意味。

図 19 PHOS 読み出しチャンネルのゲインの温度依存性。PWO 結晶は低温になるほど発光量が増える という特徴を持つ。

350V 程度の HV を各読み出し素子ごとに調整しながら供給することで、全ての読み出し素子の増幅率を 50 倍程度にしている。

	APD	\mathbf{PMT}
量子効率	~ 0.7	0.15-0.25
増幅率	$10-10^{8}$	10^{3} - 10^{7}
面積	$10\text{-}10^3 \mathrm{mm}^2$	$10^2 10^5 \text{mm}^2$
強磁場	影響なし	増幅率が変化

表4 増幅器の比較。APD は高い量子効率を持ち、磁場中でも影響を受けない。

ビームテストによって PHOS のエネルギー分解能が調べられており、

$$\frac{\sigma_E}{E} = \sqrt{\frac{0.018}{E} \oplus \frac{0.033}{\sqrt{E}} \oplus 0.011}$$

ということが分かっている。

4 測定手法

4.1 導入

光子は生成時の情報を失うことなく検出器に到達できる有用なプローブであり、ALICE 実験では主に PHOS 検出器において光子測定が行われている。PHOS では光子のほかにも荷電粒子や中性ハドロンもシグ ナルを作るため、光子測定を主目的とする場合はこれらの除去が重要となる。この除去は粒子が検出器中に入 射したときに形成する電磁シャワーの形状 (Shower Shape) が粒子ごとに異なることを利用することで可能で ある。

本研究では光子の Shower Shape を調べ光子識別の手法の確立を目的としている。光子の Shower Shape を詳細に調べるためには光子サンプルが大量に必要であるが、私は 99%の確率で光子対に崩壊する π^0 粒子 に注目し、 π^0 粒子の同定および崩壊光子のタグづけを行うことで光子サンプルを抽出した。

この章では Shower Shape の定式化および π^0 粒子の同定のために有用な手法について説明する。

4.2 クラスタリング

PHOS 検出器で得られる信号から入射した粒子の情報を取り出すためには、セルと呼ばれる各読み出し素 子における情報のままでは不十分であり、1つの入射粒子に対応する情報へまとめる必要がある。この操作の ことをクラスタリングといい、セルの情報を1まとまりにまとめたものをクラスターという。クラスターを構 成しているセルごとのエネルギー情報は電磁シャワーの形状 (Shower Shape) を反映しており、エネルギー分 布を見ることが重要となる。

クラスタリングアルゴリズムでは、クラスターの位置としてエネルギー重心を使っており、セルごとにエネ ルギーで重みを付けていって計算される (式 2)。

$$w_i = Max[0, p + log(e_i/E_{clus})]$$
⁽²⁾

ここで w_i は i 番目のセルの重み、p は定数 (経験的に求められた値であり、PHOS で p=4.5)、 e_i は i 番目の セルのエネルギー、 E_{clus} はクラスターのエネルギーである。ここで、重みとして e_i/E_{clus} のようにクラス ター中のセルのエネルギーの比をとっているのが重要で、完全な検出器では入射粒子のエネルギースケールが 大きくなってもエネルギーの落とし方の割合が同じであれば同じ Shower Shape を返すように定義している。

5

このときのクラスターのエネルギー重心は式(3)のように書ける。

$$x_{mean} = \frac{\Sigma(w_i \times x_i)}{\Sigma w_i}$$
$$z_{mean} = \frac{\Sigma(w_i \times z_i)}{\Sigma w_i}$$
(3)

ここで書いた x,z は ALICE 座標系での x,z 軸方向を回転させたものである。つまり、図 18 に書いてあるように PHOS モジュール 2 は ϕ 方向に 270° に位置し、衝突点の真下に存在することから 0° 回転、モジュール 3 は ϕ 方向に 290° に位置することから 20° 回転、モジュール 4 は ϕ 方向に 310° に位置することから 40° 回転して座標を定義し直したものである。

なお、このように軸を取り直しても、まだクラスターの位置を正しく求めることはできない。なぜならば、 PHOS 検出器は衝突点を囲むように円筒状に3モジュール配置されているが、各モジュールは平面上にセル を敷き詰めているため、衝突点からまっすぐ PHOS のセルに入射した場合、モジュールの中心付近のセルで は粒子が PWO 結晶に平行に入射するが、端のセルに対しては斜めに入射するためである。

そのため、クラスターの重心位置 (x_{mean}, z_{mean}) は式 (4) によって補正する。

$$x = x - (A + B \log E) sin\phi$$

$$z_{\prime} = z - (A + B \log E) cos\theta$$
(4)

ここで θ , ϕ は入射粒子の極角、方位角であり、E はクラスターのエネルギーである。パラメータ A,B についてはシミュレーションによって値が求められており、A=7.02+-0.04, B=0.75+-0.01 となることが分かっている [11]。

4.3 Shower Shape

図 20 シャワー形状の模式図。x,z 軸方向が ALICE 座標系で固定されているのに対し、 λ_1, λ_2 軸方向は クラスターの楕円形に合わせて軸の向きを取り直している。

Shower の重心からの広がりは 2 次のモーメント $E(x - x_{mean})^m (z - z_{mean})^n$ (E:期待値、m+n=2) まで を考えると、各要素が式 (5) のようになり、行列表記で式 (6) のようになる [9]。

$$d_{xx} = \frac{\Sigma w_i (x_i - x_{mean})^2}{\Sigma w_i} = \frac{\Sigma (w_i \times x_i^2)}{\Sigma w_i} - x_{mean}^2$$

$$d_{zz} = \frac{\Sigma w_i (z_i - z_{mean})^2}{\Sigma w_i} = \frac{\Sigma (w_i \times z_i^2)}{\Sigma w_i} - z_{mean}^2$$

$$d_{xz} = \frac{\Sigma w_i (x_i - x_{mean}) (z_i - z_{mean})}{\Sigma w_i} = \frac{\Sigma (w_i \times x_i \cdot z_i)}{\Sigma w_i} - x_{mean} \cdot z_{mean}$$

$$\begin{pmatrix} dxx \ dxz \\ dxz \ dzz \end{pmatrix}$$
(5)

式 (6) を対角化したものが広がりを楕円で近似した時の短軸、長軸半径の 2 乗に対応し式 (7) のようになる (固有値 λ が 20,02 のモーメントに対応することから、 λ_1 を M20、 λ_2 を M02 と呼ぶこともある)。なお、対 角化するための楕円の回転角 θ とモーメントの関係は、 $\theta = -0.5 \arctan(2d_{xz}/(d_{zz} - d_{xx}))$ である。

$$\begin{pmatrix} dxx \ dxz \ dxz \ dzz \end{pmatrix} \begin{pmatrix} x \ z \end{pmatrix} = \lambda \begin{pmatrix} x \ z \end{pmatrix}$$
$$\lambda_1 = \frac{dxx + dzz}{2} - \sqrt{\frac{(dxx - dzz)^2}{4} + dxz^2}$$
$$\lambda_2 = \frac{dxx + dzz}{2} + \sqrt{\frac{(dxx - dzz)^2}{4} + dxz^2}$$
(7)

4.4 不变質量

 $\pi^0 \to \gamma + \gamma$ 崩壊のように、ある粒子が崩壊して複数の粒子に崩壊する場合、崩壊先の全粒子のエネルギーと位置を正確に求めることができれば、崩壊前の粒子の情報を取り出すことができる。

PHOS では非常によい位置・エネルギー分解能を備えており、崩壊先の粒子情報から崩壊前の粒子情報を再構成することが可能である。具体例として $\pi^0 \rightarrow \gamma + \gamma$ 崩壊を考えると、エネルギーと質量の関係式 $E^2 = M^2 + P^2$ を用いて、2 つの光子が作るクラスターから崩壊前の粒子の質量 M と横運動量 $p_T (= \sqrt{p^2 - p_z^2})$ を以下のようにして計算することができる。

$$M_{\gamma\gamma} = \sqrt{(E_{\gamma1} + E_{\gamma2})^2 - (\vec{P}_{\gamma1} + \vec{P}_{\gamma2})^2}$$
$$= \sqrt{2E_{\gamma1}E_{\gamma2}(1 - \cos\theta)}$$

ここで、 θ は2つの光子のなす角であり、

$$r_{\gamma i} = \sqrt{x_{\gamma i}^2 + y_{\gamma i}^2 + z_{\gamma i}^2} \quad (i = 1, 2)$$

$$\cos\theta = \frac{x_{\gamma 1} x_{\gamma 2} + y_{\gamma 1} y_{\gamma 2} + z_{\gamma 1} z_{\gamma 2}}{r_{\gamma 1} r_{\gamma 2}}$$

となり、横運動量は

$$P_T = \sqrt{\left(\frac{E_{\gamma 1}x_{\gamma 1}}{r_{\gamma 1}} + \frac{E_{\gamma 2}x_{\gamma 2}}{r_{\gamma 2}}\right)^2 + \left(\frac{E_{\gamma 1}y_{\gamma 1}}{r_{\gamma 1}} + \frac{E_{\gamma 2}y_{\gamma 2}}{r_{\gamma 2}}\right)^2}$$

となる。

4.5 エネルギーアシンメトリー

2 つのクラスターから π^0 粒子を抽出する際、2 つのクラスターのエネルギーバランスを見ることが有用で ある。エネルギーアシンメトリーとして、

$$\alpha = \frac{|E_{cluster1} - E_{cluster2}|}{E_{cluster1} + E_{cluster2}}$$

を定義することができる。実験室系での 4 元ベクトル (E, P_x, P_y, P_z) は重心系への Lorentz 変換によって $(E^*, P_x^*, P_y^*, P_z^*) = (|\vec{P}|, |\vec{P}| \cos\theta^*, |\vec{P}| \sin\theta^*, 0)$ へと変換することができ $(\theta^*$ は重心系での親粒子の進行方向と 娘粒子の進行方向のなす角)、エネルギーアシンメトリー α は式 (8) のようになる。

$$\alpha = \frac{|\gamma(1 + \beta \cos\theta^*) - \gamma(1 + \beta \cos(\theta^* + \pi))|}{\gamma(1 + \beta \cos\theta^*) + \gamma(1 + \beta \cos(\theta^* + \pi))}$$

$$\alpha = \beta |\cos\theta^*|$$
(8)

 θ^* 分布は偏りを持たないので、 α は一定値をとる。

ただし、PHOS のように方位角の一部しか覆っていない時にはアシンメトリーカットは有用になる。 $\alpha \sim 1$ の時は $\theta^* \sim 0,180^\circ$ となり、片方の光子が π^0 の進行方向に飛び、もう片方の光子が逆側に飛ぶ。逆側に飛んだ 光子はローレンツブーストを受けても π^0 の進行方向に飛びづらいため、2 つの光子を測定できなくなる。そのためアシンメトリーが 1 付近のシグナルを除去することでバックグラウンドを排除することができる。

5 解析

5.1 データセット

解析するデータは 2011 年に取られた陽子・陽子 2.76TeV 衝突のデータ (LHC11a) である。また、比較のた めにイベントジェネレータ PYTHIA で生成されたシミュレーションデータ (LHC11e3a_plus) を用いた。解 析したのは、ESD データを解析用にコンパクトにした AOD データであり、各データの統計量は表 5 の通り である。

Production	ESD	AOD	
LHC11a(Real)	95Mevent	80Mevent	
LHC11e3a_plus(Sim)	50Mevent	45Mevent	

表 5 解析したデータ。 ESD: Event Summary Data, AOD: Analysis Object Data

ノイズの影響を減らし正常に動作しているチャンネルだけを用いるために PHOS の Noisy channel や Dead channel を解析から除去した。除去した cell の配置は図 21-23 の通りである [10]。また、実データとシミュレーションで同一の Bad channels map を使用することによって、同じ幾何学的状況を再現した。

図 21 PHOS2 での bad channels map。横軸が Row 方向 (~x 方 向)、縦軸が Column 方向 (~z 方 向)。赤色がで示しているのが解析 上除去した cell の位置。

図 22 図 21 と同様であり、 PHOS3 での bad channels map。

図 23 図 21 と同様であり、 PHOS4 での bad channels map。

5.2 光子識別

電磁カロリメータである PHOS では、光子の他にも荷電粒子や中性ハドロンなどが入射してクラスターを 形成する。PHOS でこれらの粒子の識別を行うためには粒子ごとに物質中での相互作用が違うことを利用し て電磁シャワーの形状を見てやる必要がある。中性ハドロンは物質中で原子核反応を起こし、π中間子などの 軽いハドロンを雪崩的に生成するハドロンシャワーを形成するが、電磁シャワーと比べて広がりが大きいので シャワー形状 (Shower Shape)を見ることで光子との識別が可能である。また、荷電粒子は高エネルギーの場 合は MIP としてごく少数の cell にエネルギーを落としながら通過し、低エネルギーでは磁場の影響で斜めに 入射し、複数の cell に同程度のエネルギーを落とすと考えられる。そのため荷電粒子も Shower Shape で識別 可能である。

ここでは、エネルギーごとに光子の持つ典型的な Shower Shape を調べるとともに、どのようなパラメータのクラスターを選べば光子をより多く選び出せるのか評価する。

5.2.1 光子抽出手法

光子の Shower Shape を調べるために、大半が光子クラスターであるデータを用意する必要がある。ここで は π^0 粒子が 99% の確率で光子対に崩壊することに注目し、親粒子が π^0 であるクラスターのタグ付けを行っ た。掛けた条件は、

- **ノイズの**除去 (Ncell>2)
- 中性粒子(飛跡からの距離 >10cm, 図 24)
- π^0 起源 (|M-0.135| <10 MeV(~ 2\sigma), 🛛 25)

である。

熱ノイズは cell ごとにアクシデンタルに発生するので、クラスター中の cell の数が 2 つ以下のクラスター を解析対象から外すことで除去した。また、荷電粒子の作るクラスターを除去するために PHOS クラスター の位置と最近接の飛跡との間の距離が 10cm 以上という条件を掛けた。これは、中性粒子の場合、PHOS クラ スターに対応する飛跡が存在しないため、飛跡再構成アルゴリズム中で PHOS クラスターと元々対応しない 飛跡との間の距離を計算するため大きな値をとる。 π^0 起源という条件については、PHOS で得られるクラス ターに対して考えられる全てのペア (たとえば N 個のクラスターがある場合は $_NC_2$ 通り)を考え、不変質量 が 135+-10MeV(~ 2 σ) になる時に、ペアを組んだ 2 つのクラスターを光子候補としてタグを付けた。

図 24 (a) 飛跡の延長線と PHOS クラスターの間の 最近接距離。中性粒子は対応する飛跡が存在しないた め大きな値をとる。(b) 飛跡からの距離が 10cm 以内 のクラスターエネルギー分布。250MeV 付近に MIP ピークが確認できる。(c) 飛跡からの距離が 10cm よ リ大きいクラスターのエネルギー分布。MIP ピーク は存在しない。

図 25 PHOS で再構成された 2 クラスターから 計算した不変質量分布。ここでは運動量が $3 < P_T^{\pi^0} < 4$ GeV、アシンメトリーカット $\alpha < 0.8$ を施 したものをプロットしている。 π^0 起源クラスター対 の場合 π^0 の質量の 0.135GeV に来ると考えられる。 π^0 の質量ピークの幅は約 5MeV と分かる。

5.2.2 光子の Shower Shape

5.2.1 節での条件を満たすクラスターの Shower Shape の長軸 (λ_2) 、短軸 (λ_1) 分布が図 26-34 である。そ れぞれの絵で $(\lambda_1, \lambda_2, \mathbf{I} \mathbf{V} \mathbf{F} \mathbf{J} \mathbf{U} - \mathbf{X})$ を 3 次元でプロットしており、図上部にあるのは 3 次元分布の断面図で ある。赤色ほどエントリーが多く、紫に行くほど少ない。

図 26-34 より、特に高いエネルギー領域で λ_1 、 λ_2 の分布が各軸にガウス分布のような分布をとり、図上部 にある断面図が楕円に近い分布をしていることが分かる。一方、低エネルギー領域で離散的なピークを持つこ とが分かる。これは cell の数が少ない時に、全ての cell が一直線上に並ぶ確率が高くなり、Shower Shape の 短軸方向の長さを定義できなくなることに起因する。

なお、トラックからの距離が 10cm 以内の荷電粒子バックグラウンドでの Shower Shape が図 35,36 であ り、 λ_1,λ_2 の分布が特徴的なピークを持たず非常にブロードであることが分かる。

図 26 λ_1, λ_2 分布。 0.0<E<0.2GeV

図 27 λ_1, λ_2 分布。0.2 < E < 0.5 GeV

図 28 λ_1, λ_2 分布。 0.5<E<1.0GeV

図 29 λ_1, λ_2 分布。1.0 < E < 1.5 GeV

図 30 λ_1, λ_2 分布。1.5 < E < 2.0 GeV

図 32 λ_1, λ_2 分布。 2.5<E<3.0GeV

図 34 λ_1, λ_2 分布。 4.0<E<6.0GeV

図 31 λ_1, λ_2 分布。2.0 < E < 2.5 GeV

図 33 λ_1, λ_2 分布。3.0 < E < 4.0 GeV

図 35 トラックからの距離が 10cm 以内という条件で選び出した荷電粒子クラスターでの2.0 < E < 2.5 GeVでの λ_1, λ_2 分布。大半が $\lambda_1 = 0$ に来ている。

図 36 トラックからの距離が 10cm 以内という条件で選び出した荷電粒子クラスターでの 2.0 < E < 2.5 GeV での λ_1, λ_2 分布。光子と比べると ブロードな分布をしている。

図 26-34 のピークがバックグラウンド起源ではないことが分かったので、 λ_1 、 λ_2 分布のピークを 2 次元ガウス分布を用いて評価した。

フィット関数は

$$N(\lambda_1, \lambda_2) = N_0 exp(-R2) \quad (N_0 : \mathbf{\bar{z}}\mathbf{\bar{z}})$$

$$R2 = \frac{(\lambda_1 - \bar{\lambda_1})^2}{2(\sigma_{\lambda_1})^2} + \frac{(\lambda_2 - \bar{\lambda_2})^2}{2(\sigma_{\lambda_2})^2} - c \cdot \frac{(\lambda_1 - \bar{\lambda_1})(\lambda_2 - \bar{\lambda_2})}{2(\sigma_{\lambda_1})(\sigma_{\lambda_2})} \tag{9}$$

である。第一項は短軸方向の Shower の平均的な広がり $(\bar{\lambda_1})$ と揺らぎ (σ_{λ_1}) を表し、第二項は長軸方向の Shower の平均的な広がり $(\bar{\lambda_2})$ と揺らぎ (σ_{λ_2}) を表し、第三項は楕円の回転 (c) を表す。

c の意味について補足すると、c=0のとき λ_1, λ_2 は無相関となり各軸にガウス分布する。c>0のとき λ_1 と λ_2 は負の相関を持ち、c<0のとき正の相関を持つ。図 26-34 より、分布は楕円型 (|c| < 2) で、ある点を中心になだらかに減少しており、 $\lambda_1 < \lambda_2$ であり正の相関を持つ (c < 0) ことから、c は -2 < c < 0の値をとるはずである。

フィッティングの結果は図 37,38 のようになった。

図 37 光子クラスターの λ_1, λ_2 分布および 2 次元ガウスフィットの χ^2/ndf 曲線

図 38 2.0 < E < 2.5 GeVの Shower Shape に対する 2 次元ガウスフィット。 $\chi^2/ndf\sim 2$ となっており、よ く一致している

図 37 にある等高線は内側から 2 次元ガウス分布の 1σ、2σ、3σ…におおよそ対応している。

図 39 2 次元ガウスフィットの結果。0<E<0.2。離 散的ピークにより正しくフィット出来ていない。

図 41 2 次元ガウスフィットの結果。0.5<E<1.0

図 43 2 次元ガウスフィットの結果。1.5<E<2.0

図 45 2 次元ガウスフィットの結果。2.5<E<3.0

図 40 2 次元ガウスフィットの結果。0.2<E<0.5

図 42 2 次元ガウスフィットの結果。1.0<E<1.5

図 44 2 次元ガウスフィットの結果。2.0<E<2.5

図 46 2 次元ガウスフィットの結果。3.0<E<4.0

図 47 2 次元ガウスフィットの結果。4.0<E<6.0

図 48 光子を PHOS に入射したときのクラスター エネルギー vs クラスターの cell の数。1GeV 以下で cell の数が急激に少なくなることが分かる。

$E_{cluster}$	0.0-0.2	0.2-0.5	0.5-1.0	1.0-1.5	1.5-2.0
χ^2/ndf	1520	394	42	6.63	3.17

$E_{cluster}$	2.0-2.5	2.5-3.0	3.0-4.0	4.0-6.0
χ^2/ndf	1.98	1.55	1.57	1.23

表 6 クラスターエネルギーごとの 2 次元ガウスフィットの χ^2/ndf の値

図 49 2 次元ガウス関数の 5 つのパラメータのエネルギー依存性

以後の図 39-47 も同様にエネルギー領域を変化させてフィッティングを行っている。

エネルギーごとの 2 次元ガウス分布の χ^2/ndf は表 6 のようになった。1GeV 付近から分布が離散的にな り、0.5GeV 以下ではほとんど合っていないことが分かる。これは図 48 から分かるように、クラスターを構 成する cell の数が 1GeV で 10 個程度、0.5GeV で 4 個程度しかないため Shower Shape の情報を取り出せて いないことに起因する。低エネルギーに適用限界が存在するため、以下の議論では 0.5GeV 以下は見ないこと とする。 図 49 からエネルギー依存性を見てみると、高エネルギーで一定値へ収束し、中間エネルギーではほぼ単調 増加/減少していることが分かる。これは、高エネルギーでクラスターが持つエネルギーの各 cell への分配の 仕方が一定の比率になるため、 w_i がクラスターのエネルギーのスケールによらないことを反映している。低 エネルギーへ行くにつれて有限な cell の大きさが見えてきて定数からのずれが出る。この傾向を定数と指数関 数 $(f(E) = A + B \exp(-C \cdot E_{cluster})$, $f = \overline{\lambda_1}, \overline{\lambda_2}, \sigma_{\lambda_1}, \sigma_{\lambda_2}, c)$ で表現してフィットした。図 49 の点線が フィッティングの結果求まったパラメータのエネルギー依存性である。パラメータの詳細な値は表 7 にまとめ てある。

Parameter	А	В	С
$ar{\lambda_1}$	1.254 + 0.003	-0.597 +- 0.007	-2.48 +- 0.04
$ar{\lambda_2}$	1.61 + 0.02	0.99 + 0.01	-0.69 + -0.03
σ_{λ_1}	0.1900 + 0.0002	0.063 + 0.001	-0.31 + -0.01
σ_{λ_2}	0.283 + 0.002	0.32 + 0.006	-0.76 + -0.03
с	-0.45 + -0.09	-0.19 +- 0.01	-0.05 + -0.08

表7 2次元ガウス関数のパラメータのエネルギー依存性。

5.3 Shower Shape Cut の評価

光子の作る典型的な (λ_1, λ_2) の値は $(\overline{\lambda_1}, \overline{\lambda_2})$ を中心に 2 次元ガウス関数にしたがって分布していることが 分かった。そこで、この 2 次元ガウス関数の何 σ までを光子として識別すればいいのか考える。

2次元ガウス関数の N σ 以内の領域は各クラスターの持つ (λ_1, λ_2) の値を式 (9)に代入することで計算できる。つまり、N σ 以内というのは R2< N^2 となる時である。この N の値を変えていったときにどれぐらいシグナルが変化するのかを調べ、N σ Cut としてどれが最適か評価する。

その評価のために Shower Shape Cut を施したクラスターから不変質量を計算して π^0 の質量ピークがどの ように変化するのかを見た。 π^0 は崩壊光子の両方ともが Shower Shape Cut を通過した時にのみ不変質量の 計算で再構成されるはずなので、質量ピークの変化は Shower Shape Cut の効果の 2 乗を反映しているはず である。

質量ピークはシグナルとバックグラウンドをガウス分布と4次関数でフィッティングを行った (式 10, 図 50)。

$$f(x) = \frac{A}{\sqrt{2\pi}\sigma(1bin\,\mathcal{O}\mathbf{\bar{m}})} \exp(-\frac{(x-\mu)^2}{2\sigma^2}) + B + Cx + Dx^2 + Ex^x + Fx^4 \tag{10}$$

評価のために用いた量は、 π^0 の収量 A、 π^0 質量ピークの幅 σ 、ピークの中心値 μ 、シグナル有意性 $N_S/\sqrt{N_B}$ である。ここで、A はガウス分布の積分値になるように定義しており、シグナル有意性はシグナル成分の数を $N_S = \int_{\mu-3\sigma}^{\mu+3\sigma} ($ ガウス分布)dxで求め、バックグラウンド成分の数を $N_B = \int_{\mu-3\sigma}^{\mu+3\sigma} (4 の) dx$ で求め、 N_S がバックグラウンドの誤差 $\sqrt{N_B}$ に対してどれぐらいあるかで評価した。

その結果を表しているのが図 51-54 である。横軸に Shower Shape N σ Cut の N を表示し、右端に Cut を かけていない時の値を載せている。

図 51,52 よりピークの中心値 μ やピークの幅 σ は Shower Shape Cut に依らず変化していないことが分かる。統計量が大きく変化しない限りこれらの値は変化しないはずなので、全てのカットで π^0 を抽出できてい

図 50 π^0 シグナルへのフィッティング例。上から下に向かって ($p_T^{\pi^0}$:0-0.5,1-1.5,2-3,4-5,7-10GeV)、左 から右に向かって (1 σ Cut,2 σ Cut,3 σ Cut,No Cut)。なお、0-0.5GeV は幾何学的に π^0 が PHOS にほ とんど到達できない領域である。

ると言える。図 53 の $N_S/\sqrt{N_B}$ の分布から、特に 1.5 σ から 3.0 σ Cut でシグナルを多く選び出せていること が分かる。図 54 では π^0 に対する Shower Shape の効率を示している。1,2,3 σ での π^0 に対する効率がそれ ぞれ 0.99² = 0.98, 0.95² = 0.90, 0.68² = 0.46 程度になっており、期待通りの収量変化になっている。

また、PYTHIA シミュレーションによって、Shower Shape Cut によるバックグラウンドの排除率と光子 の純度を見積もった。シミュレーション上の情報を用いてクラスターへエネルギーを落とした粒子のリストを 作成し、その中で最もエネルギーを落とした粒子が光子である場合にシグナルクラスター S、そうでない場合 にバックグラウンドクラスター B として識別した。シグナル、バックグラウンドクラスターに対して Shower Shape Cut を施し、Cut を通過するものを S_{cut} 、 B_{cut} として数え上げた。バックグラウンド排除率と光子の 純度は式 (11) で定義した。

バックグラウンド排除率:
$$1 - \frac{B_{cut}}{B}$$

光子の純度: $\frac{S_{cut}}{S_{cut} + B_{cut}}$ (11)

シミュレーションの結果は図 55 の通りであり、Shower Shape Cut によってバックグラウンドを 70% 以上 除去できることが分かった。光子の純度は図 56 の通りになった。Shower Shape Cut によって光子の純度が 20% 増加している。

以上の結果から Cut が厳しいほどバックグラウンドを除去でき、光子の純度も高いことが分かった。ただし、 π^0 の収量変化に見られるようにあまり厳しすぎるとシグナルを失うことになる。極力シグナルを失わず

図 51 N σ で Shower Shape Cut を施した時の π^0 ピークの中心値の変化。カットによらずほぼ一定で ある。

図 53 N σ で Shower Shape Cut を施した時の π^0 のシグナル有意性 $N_S/\sqrt{N_B}$ 。 $N_S/\sqrt{N_B}$ がよいのは 1.5-3.0 σ の範囲である。

図 52 N σ で Shower Shape Cut を施した時の π^0 ピークの幅の変化。カットによらずほぼ一定である。

図 54 N σ で Shower Shape Cut を施した時の π^0 収量の Efficiency。 $N_{Cut}^{\pi^0} / N_{NoCut}^{\pi^0}$ で評価した。

5.4 Efficiency

生データから物理量を求める際には、解析手法によるバイアスや検出器の効果を補正する必要がある。 そのために求めた効率は

- Shower Shape Cut の効率
- 光子の幾何学的検出効率
- *π*⁰ の幾何学的検出効率 × 再構成効率
- 光子、 π^0 の Conversion 効率

である。

Shower Shape Cut の効率は、本来光子であるにもかかわらず Cut が厳しすぎて落としてしまう効率で あり、式で書くと $N_{Cut}^{\gamma}/N_{NoCut}^{\gamma}$ と表すことができる。Shower Shape Cut の導出で光子の作る典型的な (λ_1, λ_2) 分布から N σ 以内を取り出しているので 1 σ Cut に対して 68% ,2 σ Cut に対して 90% ,3 σ Cut に対

図 55 Noで Shower Shape Cut を施した時のバッ クグラウンドの排除率。Shower Shape Cut により バックグランドを 70% 以上除去出来ている。

図 56 PYTHIA で見積もった、Shower Shape N σ Cut での光子の純度。Shower Shape Cut を掛ける ことで 30% 光子の純度が上がっている。

して 99% であることが期待される。本当にそうなっているのか先ほど求めた π^0 に対する Shower Shape 効率から見積もった。

図 57 は図 54 の横軸と要素を入れ替えたものであり、各 Shower Shape Cut での効率の横運動量依存性を示している。この図から分かることは、3-7GeV の範囲では期待通りの振る舞いをしているが、7GeV 以上や 3GeV 以下でずれが出ていることである。この理由については 6.4 節の考察で議論する。

エネルギーによって π^0 の Shower Shape Cut 効率が変化しないと仮定したときの光子の効率 ϵ_{SS}^{γ} が図 58 である。2 つの光子が Shower Shape Cut を通過した時に π^0 が再構成されるので、 $\epsilon_{SS}^{\gamma} = \sqrt{\epsilon_{SS}^{\pi^0}}$ から求めた。

図 57 Shower Shape Cut $\sigma \pi^0 p_T$ ごとの効率。

図 58 Shower Shape Cut の光子エネルギーごとの 効率見積もり。 π^0 での効率の平方根をとることで見 積もった。

幾何学的検出効率は検出器が全立体角を覆っていないことによる効率であり、シミュレーションによって光 子を $|\eta| < 0.5$ の範囲に発生させ、光子が PHOS の領域である $|\eta| < 0.12, 260^\circ < \phi < 320^\circ$ に入射する数を 数えることによって求めた。結果は図 59 である。 再構成効率は、粒子が PHOS 検出器に入射しても cell 間の隙間に当たって反応しなかったり、検出器の端 に行ってエネルギーを漏らすことによって再構成されなくなる効率である。 π^0 については幾何学的検出効率 × 再構成効率の積を求めた。この効率は PYTHIA シミュレーションで MB イベントを生成し、 $|\eta| < 0.5$ の 領域に飛んで行った π^0 の数と、検出器の反応を通し PHOS($|\eta| < 0.12, 260^\circ < \phi < 320^\circ$)で再構成された π^0 の数の比から求めた。結果は図 60 である。

図 59 PHOS での光子の幾何学的検出効率。

図 60 Bad channels map を考慮した π^0 再構成効 率と幾何学的検出効率の積。

光子が PHOS へ飛んでいく途中でビームパイプや検出器中の物質と相互作用して収量が変化する Conversion という反応がある。磁場中で Conversion による収量の変化は π^0 に対して、ほとんど p_T によらず 0.8 という研究があり [14]、光子の Conversion efficiency として $\sqrt{0.8} \sim 0.9$ を用いた。

6 結果・考察

6.1 全光子収量

バックグラウンドクラスターを除去するため Shower Shape Cut を全クラスターに施し、Cut を通過する ものを光子として識別した。全光子の不変収量を求めるため、式 (12) のようにいくつかの補正係数を掛けた。

$$\frac{dN^{\gamma}}{dp_{T}}|_{prod} = \frac{1}{\epsilon_{acc}^{\gamma} \cdot \epsilon_{ss}^{\gamma} \cdot \epsilon_{conv}^{\gamma}} \quad \cdot (1 - X_{back}) \quad \cdot \frac{dN^{\gamma}}{dp_{T}}|_{meas}$$
(12)

ここで、 ϵ_{acc}^{γ} は光子が PHOS に到達する幾何学的検出効率、 ϵ_{ss}^{γ} は Shower Shape Cut によって光子を再構成するための効率、 ϵ_{conv}^{γ} は PHOS に到達するまでに検出器中の物質と相互作用して光子収量が変化する効率、 X_{back} は Shower Shape Cut 適用後にバックグラウンドが残っている割合である。

5.4 章で求めた効率を用いて補正したところ、全光子の収量は図 61 のようになった。ほとんどの横運動量 領域で 20% 以内で一致しているが、系統的なずれが見られる。このことについては 6.4 節で議論する。

図 61 全光子の収量。赤線がデータ点であり、黒で塗っているのが PYTHIA による予測と誤差の範囲で ある。なお、実データの誤差は統計誤差に加え、6.3 節で議論している系統誤差を含めて表示した。

6.2 直接光子収量

直接光子の収量を求めるためには、バックグラウンドとなるハドロン崩壊光子の収量を見積もって統計的に 差し引く必要がある。バックグラウンド中の π^0 の寄与は80%程度 (図 8) と非常に高いため、まず π^0 収量の 測定を行った。 π^0 粒子は2クラスターの不変質量を計算し、横運動量ごとに π^0 の質量 (135MeV) 付近に立 つシグナルを積分することで収量を求めた。

 π^0 の収量を求める際に避けることの出来ないバックグラウンドとしてコンビナトリアルバックグラウンド がある。たとえば、1つの π^0 が PHOS に入射して 2つのクラスターを形成し、同時に 3 つのバックグラウン ドクラスターが形成されたとすると、 π^0 候補を探すために ${}_5C_2=10$ 通りの組み合わせを考えるが、1 つしか 本当の π^0 崩壊クラスター対は存在せず、残りの 9 つがバックグラウンドとして生成されてしまう。このまま シグナルを数え上げてしまうとバックグラウンドの分だけ多く見積もってしまうので、無相関な組み合わせを 再現してバックグラウンドを見積もる必要がある。

そのために異なるイベント (Mixed event) のクラスターを組み合わせて無相関なデータを再現し、コン ビナトリアルバックグラウンドを見積もった。そして、同じイベント (Same event) のクラスターを組み合 わせたデータからコンビナトリアルバックグラウンドを差し引くことで π^0 シグナルを抽出した。その際、 Same event と Mixed event で組み合わせの数が異なるので、相関のある粒子がほとんど出ない不変質量 200-400MeV の領域で Same event と Mixed event の比をとり、スケールを合わせた。

図 62 $2 < P_T^{\pi^0} < 3$ GeV, R2<1.5 での Same event のクラスターからペアをとり不変質量を計算したも の。 π^0 質量領域にピークが見える。

図 64 Same-event/Mixed-event の比。 $M_{\pi^0} \sim 135 MeV, M_{\eta} \sim 548 MeV$ に相関のある領域があるので、相関のない 200-400 MeV の領域で比をとった。

図 63 $2 < P_T^{\pi^0} < 3$ GeV, R2<1.5 での Mixed event のクラスターからペアをとり不変質量を計算したもの。 π^0 質量領域にピークは存在しない。

図 65 Same-event からスケールした Mixed-event を引いたもの。低質量領域には Jet からの相関のあ るバックグラウンドが存在するので取り除けていな いバックグラウンドを 4 次関数で見積もった。シグ ナルはガウス分布でフィットし積分することで収量 を求めた。

図 62-65 は $2 < p_T^{\pi^0} < 3$ GeV, R2<1.5 でのコンビナトリアルバックグラウンド差し引きの一例である。 フィット関数はガウス分布 +4 次関数であり、シグナルをガウス分布で、バックグラウンドを 4 次関数で求め た。測定結果は実データ、シミュレーションデータに対して、それぞれ図 66,67 のようになった。 π^0 崩壊光子の寄与を差し引くために式 (13) で定義される Double Ratio を用いる。

$$R = \frac{(\gamma/\pi^0)_{Measured}}{(\gamma/\pi^0)_{Background}} \approx \frac{\gamma_{Measured}}{\gamma_{Background}}$$
(13)

Double ratio は実データとシミュレーションデータでの γ/π^0 の比をとったものである。分母の π^0 の項は

図 66 LHC11a(実データ) での π^0 の横運動量 p_T ご との π^0 収量

図 67 LHC11e3e_plus(シミュレーションデータ) で の π^0 の横運動量 p_T ごとの π^0 収量

規格化のために用いており、崩壊光子に対して γ/π^0 の比は過去の様々な実験での測定の結果、定数になることが知られている。定数の値は、 π^0 スペクトラム $d\sigma_{\pi^0}/dp_T \sim p_T^{-n}$ の指数 n に対して、 $\gamma/\pi^0 \sim 2/(n-1))[18]$ 程度である。実データに直接光子が含まれている場合には、 γ の項に崩壊光子に加え直接光子が含まれるの で、Double ratio は 1 よりも大きくなる。

Double ratio を用いるメリットはいくつかの系統誤差が打ち消されることにある。たとえば、検出器で得られるエネルギーが真値からずれていても、比をとることによってずれの影響が小さくなる。

本研究では、直接光子生成過程を含まないシミュレーションデータを作成し γ/π^0 比を求め、直接光子を含んでいる実データの γ/π^0 比と比較した。

Double ratio を用いて直接光子収量は式 (14) のように計算できる。

$$\frac{dN^{\gamma}}{dp_{T}}|_{direct} = \frac{dN^{\gamma}}{dp_{T}}|_{inclusive} - \frac{dN^{\gamma}}{dp_{T}}|_{decay}
= \frac{dN^{\gamma}}{dp_{T}}|_{inclusive} \times (1 - 1/R)
(R = \frac{\gamma_{Measured}}{\gamma_{Backaround}} = \frac{N^{\gamma}|_{inclusive}}{N^{\gamma}|_{decay}})$$
(14)

実データとシミュレーションデータで γ/π^0 比は図 68,69 のようになった。2.76TeV 陽子陽子衝突では、 π^0 の収量のべき乗の指数 n は 6.389 となると求められており [12]、その時の期待値 2/(6.389-1)=0.371 にエラー の範囲で一致している。

 γ/π^0 比を実データとシミュレーションデータで割って求めた Double ratio は図 70 のようになった。黒い バンドは PYTHIA による見積もりである。測定データは 2-4GeV で PYTHIA の見積もりから大きくずれて いる。ここについては 6.4 節で議論する。

図 68 実データでの γ/π^0 比。

図 69 シミュレーションデータでの γ/π^0 比。

図 70 Double ratio。実データおよびシミュレーションデータでの誤差は統計誤差に加え、6.3 節で議論 している系統誤差を含めて表示した

6.3 系統誤差

系統誤差として

- *π*⁰ シグナル抽出の誤差
- Shower Shape Cut の実データとシミュレーションデータでの効率の違い
- Shower Shape Cut での N σ Cut の違いによる収量の違い

を評価した。

シミュレーションデータでは、実データに存在するノイズ等の成分や PHOS 検出器でのエネルギーの非線 形性を完全に再現することができない。そのため、シミュレーションデータに対して Shower Shape Cut を 掛けた時の π^0 の収量変化を調べ、実データとどれぐらい違うのか調べた。シミュレーションデータに対して π^0 に対する Shower Shape Cut の効率を求め平方根をとることで図 58 と同様の計算をしたものが図 71 であ る。こちらも 1,2,3 σ に対して 68% ,95% ,99% 程度で収量が変化しており、N σ Cut として定性的には実デー タと同様の振る舞いをしていることが分かる。

ここから、実データとシミュレーションデータの Shower Shape Cut の効率のずれを見たのが図 72 である。 $\epsilon_{SS}^{\gamma}|_{Real}/\epsilon_{SS}^{\gamma}|_{Sim}$ の比をとることでずれを求めた。 1σ Cut 以上の厳しい Cut でシミュレーションデー タと大きく異なっているが、 1.5σ Cut 以下の緩い Cut でずれが 5% 程度であることが分かる。

また、 π^0 粒子を抽出するときの誤差について調べた。考慮したのは π^0 のバックグラウンド成分をフィットする関数形とフィット領域である。関数形は使用した4次関数の他にも2次、3次関数を用いて π^0 の収量がどれだけ変化するのか調べた。結果を表しているのが図73であり、3%程度であることが分かった。 π^0 のフィッティング領域については、使用した (0.05-0.30)GeV でのフィット範囲から上限・下限とも20%変化させることで見積もった。結果は図74の通りであり、低エネルギーほどずれが大きくて4%程度、高エネルギーではほとんどずれずに1%程度であることが分かった。

クラスターに Shower Shape Cut を施し、シグナルをロスする分を ϵ_{SS}^{γ} で補正して比較したものが図 75 である。低エネルギーほどずれが大きくなる傾向が見え、低エネルギーで 25% 程度, 高エネルギーで 14% 程度である。

図 71 シミュレーションデータに対する、光子の Shower Shape efficiency のエネルギー依存性

図 72 Shower Shape Cut の効率のずれを実デー タ/シミュレーションデータの比で評価したもの。 1.5σ Cut より緩いCut で違いは 5% 程度ということ が分かる。

系統誤差	1-1.5GeV	4-5 GeV
Shower Shape N σ Cut の違い	25%	14%
π^0 フィット関数	3.2%	2.8%
π^0 フィット範囲	3.7%	0.5%
Shower Shape Cut 効率の実データと		
シミュレーションデータの違い	2.4%	1.8%

表 8 各要素の統計誤差の寄与。代表的に低エネルギーで 1-1.5GeV の値を高エネルギーで 4-5GeV の値を示した。

図 73 π^0 粒子の収量を求める際のバックグラウンド のフィット関数による系統誤差。系統誤差は 5% 以 下である。

図 74 π^0 粒子の収量を求める際のバックグラウンド のフィッティング範囲による系統誤差。系統誤差は 低エネルギーで 4% 程度、高エネルギーで 1% 程度 である。

図 75 実データに Shower Shape Cut を施し、効率 ϵ_{SS}^{γ} で補正したもの。N σ Cut に依らず同じ値にな るべきものであり、Cut ごとの違いを系統誤差で評価した。

6.4 考察

Shower Shape Cut の効率が 3GeV 以下、7GeV 以上で傾向が変わる傾向が見られた。この原因として考え られるのは、7GeV 以上に関しては、図 50 の下の段を見て分かるように、 π^0 ピークの統計が少ないことに よって誤差が大きいためと考えられる。また、元々統計量によって Shower Shape の (λ_1, λ_2) 分布を 6GeV までしか調べられなかったことも影響していると考えられる。この領域については高統計のデータを解析する ことで原因が分かるはずである。

3GeV 以下で小さくなるのは、Shower Shape N σ Cut が厳しくなるほど大きく減少していることから、シ ミュレーションデータが実データを再現出来ていないことが原因だと考えられる。実際、このことを支持す るプロットが得られている。図 76 は、シミュレーションデータに対して光子クラスターの (λ_1, λ_2) 分布を求 め、Shower Shape Cut の 5 つのパラメータを導出したものである。実線が実データから求めたパラメータの エネルギー依存性であり、点線がシミュレーションデータから求めた依存性である。実データとシミュレーションデータを比較して大きく異なっているのは短軸、長軸方向の広がり $(\bar{\lambda}_1, \bar{\lambda}_2)$ であり、両方ともシミュレーションデータで 10% 程度小さくなっている。Shower Shape Cut のパラメータを実データから求めたため、シミュレーションデータでは Shower Shape Cut によって本来 PHOS にシグナルを作った光子数よりも少ない数のクラスターが光子として識別されていると考えられる。これは全光子や直接光子で PYTHIA の見積もりよりも多かったことと矛盾しない。今後は実データとシミュレーションデータの定量的な比較とシミュレーションによる再現性の向上が必要である。

図 76 実データから求めた Shower Shape パラメータ (実線) とシミュレーションデータから求めたパラ メータ (点線) の比較。 $\overline{\lambda_1}, \overline{\lambda_2}$ がシミュレーションデータのほうが実データよりも Shower が小さい傾向に ある。

本研究では 1GeV 付近からクラスターの分布が離散的となり、2 次元ガウス分布で上手くフィット出来なかった。低エネルギー領域の光子の Shower Shape の再現性向上のため試みたこととして、 π^0 領域 (125< $M_{\gamma\gamma}$ <145) および π^0 のサイドバンド領域 (115< $M_{\gamma\gamma}$ <125,145< $M_{\gamma\gamma}$ <155) に来るクラスター対をそれぞれタグして、 λ_1, λ_2 分布において π^0 領域のものからサイドバンド領域のものを差し引くということを行った。図 50 の上側のプロットから分かるように、低エネルギーでは π^0 の質量領域に来るクラスター対を要求しても膨大なバックグラウンドが含まれている。 π^0 のサイドバンド領域には π^0 起源の光子とは特定できないクラスターが来ており、(λ_1, λ_2) 分布において π^0 質量領域から π^0 のサイドバンド領域を差し引くことで統計的に光子クラスターのみを選び出すことができる。

この結果が図 77,78 である。差し引きを行うことで、低エネルギーで現れる (λ_1, λ_2)~(0,0),(0,1.3) の特徴 的なピークが無くなっていることが分かる。そのため、より光子起源のクラスターの分布を再現していると考 えられる。ただし、統計量が大きく減るため各点での誤差が大きくなり、フィッティングを行うと χ^2 /ndf が 悪くなった (0.5-1.0GeV に対して、差し引き前:42 → 差し引き後:853)。そのため本研究では採用しなかった が、統計の大きなデータサンプルに対しては有効となる可能性がある。

原子核衝突のイベントジェネレータである HIJING で見積もった、2.76TeV 鉛鉛衝突での Shower Shape Cut によるバックグラウンド排除率と光子純度が図 79,80 である。陽子陽子衝突の結果と同様に鉛鉛衝突での 多粒子生成環境下でも Shower Shape Cut が有効であると考えられる。

図 77 差し引きを行わず求めた、光子の λ_1,λ_2 分布

図 78 サイドバンド領域のクラスターを差し引いて 求めた、光子の λ_1, λ_2 分布

図 79 HIJING で見積もった、Shower Shape Cut によるバックグラウンド排除率。

図 80 HIJING で見積もった、Shower Shape Cut による光子純度。

7 結論

本研究では LHC 加速器での陽子陽子 2.76 TeV 衝突において光子識別手法の確立を目的として進めてきた。 光子のシャワー形状を詳細に調べるため、私は π^0 粒子が崩壊した際に 99% の確率で生成される光子に注目 し、 π^0 を同定し光子のタグをつけることで光子クラスターを抽出に成功した。

光子クラスターはその形状を楕円の短軸、長軸方向の広がりで評価し、エネルギー依存性の定式化を行った。この依存性から求めた光子識別カットをクラスターに適用した結果、3σの Cut によってバックグラウンドを 70% 除去でき、光子の純度を 0.65 から 0.85 へと約 20% 増加することが分かった。

光子識別と同時に、求めたカットを用いて全光子収量や直接光子収量の測定を進めた。その結果 PYTHIA による見積もりと大まかに一致することが確認できた。ただし、シミュレーションによる実データの間には シャワーの形状に違いがあること判明しており、シミュレーションの再現性の向上が必要不可欠である。

謝辞

この論文は多くの人のご支援により完成しました。ここに感謝を述べます。

杉立先生には研究方針について多くのご指導をして頂きました。私の迷走しがちな研究に対して基礎からお さえていく方法論を示され、また先を見据えての助言を多く頂きました。今でも困難にぶつかった際は真っ先 に杉立先生の言葉が浮かびます。ありがとうございました。志垣先生からは物事の伝え方や見方、考え方を多 く学びました。学会や会議の場でプロットの1つ1つから物理的なメッセージを読み取り要点を押さえてい く姿に接することで、物事のストーリーを意識するようになりました。ありがとうございます。本間先生には 実験や TA の際に面白い物理の話をたくさん聞かせて頂きました。日頃から随所に物理屋としての情熱や好奇 心を感じることができ、大きな刺激を受けました。ありがとうございました。鳥井さんには解析やハードウェ アについて多くのことをご教授して頂きました。また、研究者の一員として積極的に議論に乗って頂きまし た。充実した研究生活を送ることができたのも鳥井さんのおかげです。ありがとうございました。中宮さんと 来島さんには解析についてたびたび相談に乗っていただきました。また、日頃の雑談を通じて楽しい時間を過 ごすとともに、趣味の話を通じて私の世界が広がりました。ありがとうございました。坂口さんには研究の場 で引っ張って頂きました。国際会議で奮闘する姿を見たり日々の研究を通じて目標としてきました。またよく 整理された資料や発表を何度も参考にしました。ありがとうございました。翠くんとは同期でやってこれて本 当に良かったと思っています。とても勤勉で周囲の状況を把握しながら自分の結果を出していく姿から大いに 刺激を受けました。また、翠くんとの議論や雑談を通じて多くの課題に気付き、研究を進めることができまし た。ありがとうございました。

Appendix

付録 A ラピディティー y と擬ラピディティー η

入射ビームの全エネルギーを E、ビーム軸方向の運動量を pz とすると、

$$y = \frac{1}{2}\ln(\frac{E+p_z}{E-p_z})$$

がラピディティーの定義である。ラピディティーは速度の目安となる量であり、非相対論的極限 $(p \ll m)$ で、

$$y = \frac{1}{2} \ln(\frac{m + mv_z}{m - mv_z})$$

= $\frac{1}{2} \ln(\frac{1 + v_z}{1 - vz})$
= $\frac{1}{2} [\ln(1 + v_z) - \ln(1 - v_z)]$
= $\frac{1}{2} [(v_z - \frac{1}{2}v_z^2 + \dots) - (-v_z - \frac{1}{2}v_z^2 + \dots)]$
= v_z

となる。

また、ローレンツ変換に対して、

$$y = \frac{1}{2} \ln(\frac{E^* + p^*}{E^* - p^*})$$

= $\frac{1}{2} \ln[\frac{(\gamma E - \beta \gamma p) + (-\beta \gamma E + \gamma p)}{(\gamma E - \beta \gamma p) - (-\beta \gamma E + \gamma p)}]$
= $\frac{1}{2} \ln[\frac{E(1 - \beta) + p(1 - \beta)}{E(1 + \beta) - p(1 + \beta)}]$
= $\frac{1}{2} \ln[\frac{E + p}{E - p}\frac{1 - \beta}{1 + \beta}]$
= $\frac{1}{2} \ln(\frac{E + p}{E - p}) + \frac{1}{2} \ln(\frac{1 - \beta}{1 + \beta})$
= $y + f(\beta)$

のように定数のシフトをする。

以上の性質から以下の関係を満たす。

$$\Delta y^* = \Delta y \tag{15}$$

$$\frac{\partial f}{\partial y^*} = \frac{\partial f}{\partial y} \quad (f: 任意の関数) \tag{16}$$

そのためローレンツ不変な物理量を表すのにラピディティーがよく用いられる。

また、ラピディティーの式に対して質量をゼロとした時の定義を擬ラピディティーという。 $p_z = pcos\theta$ に対して、

$$\eta = \frac{1}{2} \ln(\frac{p\sqrt{1 + (\frac{m_0}{p})^2} + p\cos\theta}{p\sqrt{1 + (\frac{m_0}{p})^2} - p\cos\theta})$$

$$= \frac{1}{2} \ln(\frac{p(1 + \frac{1}{2}(\frac{m_0}{p})^2 + \ldots) + p\cos\theta}{p(1 + \frac{1}{2}(\frac{m_0}{p})^2 + \ldots) - p\cos\theta})$$
$$= \frac{1}{2} \ln\frac{p(2\cos^2\frac{\theta}{2} + \frac{m_0^2}{2p^2} + \ldots)}{p(2\sin^2\frac{\theta}{2} + \frac{m_0^2}{2p^2} + \ldots)}$$
$$\simeq -\ln\tan\frac{\theta}{2}$$

となり、擬ラピディティー η はビーム軸との角 θ に結びついた量である。

参考文献

- [1] 永江知文·永宮正治共著 原子核物理学
- [2] F. Karsch, Lect. Notes Phys. 583 (2002) 209.
- [3] F. ハルツェン・A.D. マーチン共著 クォークとレプトン
- [4] J. Phys. G 37, 075021(2010)
- [5] ALICE Technical Design Report 1-13
- [6] LHC ALICE Official page
- [7] 八木浩輔 原子核物理学
- [8] PHOS User Manual rev4
- [9] 橋本翔太 東北大学大学院 2007 年度修士論文
- [10] twiki PHOS offline page (Internal only)
- [11] ALICE physics performance ALICE Technical Design Report 13
- [12] twiki PWG4PhotonsAndJets aliceNoteMesonConv (Internal only)
- [13] 日栄綾子 広島大学大学院 2009 年度修士論文
- [14] 翠純平 広島大学大学院 2011 年度修士論文
- [15] 坂口拓明 広島大学大学院 2010 年度修士論文
- [16] 溝口謙太 広島大学大学院 2008 年度修士論文
- [17] ALICE-INT-2005-053
- [18] Rev. Mod. Phys. 56, 181 221 (1984)